期刊文献+
共找到3,994篇文章
< 1 2 200 >
每页显示 20 50 100
Microstructural characterization and mechanical properties of(TiC+TiB)/TA15 composites prepared by an in-situ synthesis method
1
作者 Zhi-yong Zhang Jiao-jiao Cheng +3 位作者 Jia-qi Xie Shi-bing Liu Kun Shi Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第2期168-174,共7页
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based... Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃. 展开更多
关键词 titanium matrix composites microstucture MICROHARDNESS tensile properties in-situ synthesis
下载PDF
In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N_(2)
2
作者 Yunmian Xiao Changhui Song +4 位作者 Zibin Liu Linqing Liu Hanxiang Zhou Di Wang Yongqiang Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期387-409,共23页
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl... It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites. 展开更多
关键词 laser powder bed fusion layered structure composites in-situ synthesis TiN strength-plasticity synergy
下载PDF
Preparation,Characterization and Photothermal Study of PVA/Ti_(2)O_(3) Composite Films
3
作者 尚蒙娅 HE Yanyan +3 位作者 YU Jianhui YAN Jiahui XIE Haodi 李金玲 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期658-663,共6页
In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The... In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)). 展开更多
关键词 Ti_(2)O_(3)particles solution casting method composite film photothermal conversion
下载PDF
Investigation into machining performance of microstructurally engineered in-situ particle reinforced magnesium matrix composite 被引量:2
4
作者 S.K.Sahoo B.N.Sahoo S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期916-935,共20页
Magnesium and magnesium in-situ composites have significant potential in the application of design and manufacturing for automotive and aerospace industries because of their high specific strength and reduced fuel con... Magnesium and magnesium in-situ composites have significant potential in the application of design and manufacturing for automotive and aerospace industries because of their high specific strength and reduced fuel consumption.But there are many challenges for machining of Mg based alloys and composites because of the high tendency of fire and oxidation.These challenges can be minimized through microstructural engineering.In this present study,the machining performances of AZ91 Mg alloy and in-situ hybrid TiC+TiB_(2)reinforced AZ91 metal matrix composite was investigated.The effectβ-Mg_(17)Al_(12)phases and grain refinement with and without in-situ particles on machinability were studied through microstructural engineering via aging and friction stir processing.The end milling operation was carried out at different cutting speeds ranging from 25 mm/min to 90 mm/min under dry environment by using an AlTiN-coated tungsten carbide tool.The optimum cutting speed for machining was found to be 75 mm/min based on the surface roughness values of all conditioned materials.The base material with dendritic microstructure was found to have poor machinability in terms of inadequate surface finish and edge-burrs formation.The combined effect of in-situ TiC+TiB_(2)particles addition and grain refinement enhanced the machining performance of the material with superior surface finish,negligible edge-burr formation and better tool wear resistance.The influence of in-situ TiC+TiB_(2)particles,β-Mg_(17)Al_(12)phases and grain refinement on machining characteristics are explained based on the tool wear mechanisms,chip behavior and machining induced affected zone. 展开更多
关键词 MAGNESIUM in-situ composite END-MILLING Tool wear Chip morphology
下载PDF
Suppression of Co(Ⅱ)ion deposition and hazards:Regulation of SEI film composition and structure
5
作者 Jiaqi Zhan Mingzhu Liu +4 位作者 Yutian Xie Jiarong He Hebing Zhou Lidan Xing Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期259-265,I0007,共8页
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th... Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes. 展开更多
关键词 Lithium-ion batteries Transition metal ions SEI film composition and structure
下载PDF
In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing 被引量:2
6
作者 Youwen Yang Changfu Lu +3 位作者 Lida Shen Zhenyu Zhao Shuping Peng Cijun Shuai 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期629-640,共12页
Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degr... Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application. 展开更多
关键词 Laser addictive manufacture Mg-based composite Mesoporous bioglass in-situ deposition Degradation behavior
下载PDF
Preparation and Characterization of Cellulose Nanofibril-Waterborne Polyurethane Composite Films 被引量:4
7
作者 Xinqi Li Jinghuan Chen +1 位作者 Jingang Liu Qi Chen 《Paper And Biomaterials》 CAS 2023年第1期26-34,共9页
To improve the performance of polyurethane films,small amounts of cellulose nanofibrils(CNF)were physically blended with a waterborne polyurethane(WPU)emulsion,and then CNF/WPU composite films were prepared by cast-co... To improve the performance of polyurethane films,small amounts of cellulose nanofibrils(CNF)were physically blended with a waterborne polyurethane(WPU)emulsion,and then CNF/WPU composite films were prepared by cast-coating and drying.The particle size of the emulsions and the chemical structure,micromorphology,thermal stability,mechanical properties,and water resistance of the composite films were characterized using a Malvern laser particle size analyzer,Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),thermogravimetric analysis(TGA),an electronic strength machine,water contact angle analysis(WCA),and water absorption tests,respectively.The results showed that at a low CNF content of 0.3 wt%,the particle size of the WPU emulsion and chemical structure of the film did not change significantly.In addition,the tensile strength of the composite film increased by up to 108%compared to the neat WPU film,and the thermal stability and water resistance were slightly improved.The addition of CNF greatly enhanced the tensile strength while maintaining the other original properties of the WPU film,which may greatly improve the service life and tear resistance of commercial coatings in the future. 展开更多
关键词 cellulose nanofibrils physical blending waterborne polyurethane composite film
下载PDF
Preparation and Properties of Vegetable-Oil-Based Thioether Polyol and Ethyl Cellulose Supramolecular Composite Films
8
作者 Ruyu Yan Jian Fang +7 位作者 Xiaohua Yang Na Yao Mei Li Yuan Nie Tianxiang Deng Haiyang Ding Lina Xu Shouhai Li 《Journal of Renewable Materials》 SCIE EI 2023年第4期1937-1950,共14页
Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes i... Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields. 展开更多
关键词 Ethyl cellulose dimeric fatty acid based thioether polyol supramolecular system composite films
下载PDF
Lithium intercalation/de-intercalation behavior of a composite Sn/C thin film fabricated by magnetron sputtering 被引量:8
9
作者 ZHAO Lingzhi HU Shejun +2 位作者 LI Weishan LI Liming HOU Xianhua 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期507-512,共6页
A tin film of 320 nm in thickness on Cu foil and its composite film with graphite of-50 nm in thickness on it were fabricated by magnetron sputtering. The surface morphology, composition, surface distributions of allo... A tin film of 320 nm in thickness on Cu foil and its composite film with graphite of-50 nm in thickness on it were fabricated by magnetron sputtering. The surface morphology, composition, surface distributions of alloy elements, and lithium intercalation/de-intercalation behaviors of the fabricated films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe microanalyzer (EPMA), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma atomic emission spectrometry (ICP), cyclic voltammetry (CV), and galvanostatic charge/discharge (GC) measurements. It is found that the lithium intercalation/de-intercalation behavior of the Sn film can be significantly improved by its composite with graphite. With cycling, the discharge capacity of the Sn film without composite changes from 570 mAh/g of the 2nd cycle to 270 mAh/g of the 20th cycle, and its efficiency for the discharge and charge is between 90% and 95%. Nevertheless, the discharge capacity of the composite Sn/C film changes from 575 mAh/g of the 2nd cycle to 515 mAh/g of the 20th cycle, and its efficiency for the discharge and charge is between 95% and 100%. The performance improvement of tin by its composite with graphite is ascribed to the retardation of the bulk tin cracking from volume change during lithium intercalation and de-intercalation, which leads to the pulverization of tin. 展开更多
关键词 lithium-ion battery ANODE magnetron sputtering composite film lithium intercalation/de-intercalation
下载PDF
Large-scale fabrication of re duce d graphene oxide-sulfur composite films for flexible lithium-sulfur batteries 被引量:4
10
作者 Yue Liu Minjie Yao +1 位作者 Linlin Zhang Zhiqiang Niu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期199-206,共8页
The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, fle... The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, flexible Li-S batteries with high areal capacity are desired. Herein, we fabricated freestanding reduced graphene oxide-sulfur(RGO@S) composite films with a cross-linked structure using a blade coating technique, followed by a subsequent chemical reduction. The porous cross-linked structure endows the composite films with excellent electrochemical performance. The batteries based on RGO@S composite films could exhibit a high discharge capacity of 1381 m Ah/g at 0.1 C and excellent cycle stability. Furthermore, the freestanding composite film possesses excellent conductivity and high mechanical strength. Therefore, they can be used as the cathodes of flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled and remained stable electrochemical performance under different bending states. 展开更多
关键词 Graphene SCALEUP composite film FLEXIBLE Lithium-sulfur battery
下载PDF
Photocatalytic degradation of methyl orange over ITO/CdS/ZnO interface composite films 被引量:4
11
作者 WEI Shouqiang, SHAO Zhongcai, LU Xudong, LIU Ying, CAO Linlin, HE Yan School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110168, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第7期991-996,共6页
ITO/CdS/ZnO interface composite films were successfully prepared by subsequent electrodeposition of CdS and ZnO onto indium tin oxide (ITO) glass substrates. The obtained ITO/CdS/ZnO composite films were characteriz... ITO/CdS/ZnO interface composite films were successfully prepared by subsequent electrodeposition of CdS and ZnO onto indium tin oxide (ITO) glass substrates. The obtained ITO/CdS/ZnO composite films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The photocatalytic activity of ITO/CdS/ZnO composite films were investigated using methyl orange (MO) as a model organic compound under UV light irradiation. The influence of operating parameters on MO degradation including initial concentration of MO, pH value of solution, and inorganic anion species over the composite films were examined. A blue shift of absorption threshold was observed for the ITO/CdS/ZnO film in comparison with ITO/ZnO film. ITO/CdS/ZnO composite films prepared under specific conditions showed a higher photocatalytic activity than that of ITO/ZnO films. It was also found that the photocatalytic degradation of MO on the composite films followed pseudo-first order kinetics. 展开更多
关键词 ELECTRODEPOSITION zinc oxide cadmium sulfide composite film photocatalytic activity
下载PDF
Effect of Cerium on Microstructures and High Temperature Oxidation Resistance of An Nb-Si System In-Situ Composite 被引量:10
12
作者 刘爱勤 孙璐 +1 位作者 李树索 韩雅芳 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期474-479,共6页
Nb-16Si-24Ti-6Cr-6A1-2Hf-xCe (x =0, 0.05, 0.1,02.5, 0.5, 1 (%, atom fraction)) in situ composites were prepared by arc melting The microstmcture and the effect of rare earth element cerium on 1250℃ oxidation resi... Nb-16Si-24Ti-6Cr-6A1-2Hf-xCe (x =0, 0.05, 0.1,02.5, 0.5, 1 (%, atom fraction)) in situ composites were prepared by arc melting The microstmcture and the effect of rare earth element cerium on 1250℃ oxidation resistance of the composites were investigated with scanning electron microscopy (SEM) and X-ray energy disperse spectrum (EDS), as well as X-ray diffraction (XRD). The experimental results showed that the high temperature oxidation resistance of the alloy was improved by adding a proper amount of cerium (Ce). The effect of Ce was considered as the concurrent of the following three factors: first, the oxide of Ce formed in the interface reduced the internal oxidation rate; second, the lath shaped oxide containing Ce increased the cracking resistance and reduced the expansion of the oxide scale; and third, the decrease of the sificide volume fraction on account of Ce addition reduces the power of the sample resisting oxygen penetration. 展开更多
关键词 oxidation resistance in-situ composite Nb-Si alloy rare earths
下载PDF
Ni nanocomposite films formed by Ni nanowires embedded in Ni matrix using electrodeposition 被引量:4
13
作者 周兆锋 潘勇 雷维新 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期637-642,共6页
Ni nanocomposite films formed by Ni nanowires embedded in Ni matrix(Ni nanowire/Ni composite films)were fabricated by electrodeposition combined with supersonic stirring in a conventional Watts'bath containing Ni ... Ni nanocomposite films formed by Ni nanowires embedded in Ni matrix(Ni nanowire/Ni composite films)were fabricated by electrodeposition combined with supersonic stirring in a conventional Watts'bath containing Ni nanowires with diameter about 30 nm.The deposition temperature-dependent microstructure,crystal orientation,lattice constant and corrosion behavior of the Ni nanowire/Ni composite films were investigated by field emission scanning electron microscope,X-ray diffraction and potentiodynamic polarization tests,respectively.And the possible mechanism was discussed.It is found that to some extent,the deposition temperature has an impact on the microstructure,crystal orientation,lattice constant and corrosion property of the Ni nanowire/Ni composite films.The Ni nanowire/Ni composite films prepared at 50℃exhibit a novel inter-twisted-nanowire microstructure and have the best corrosion resistance. 展开更多
关键词 nickel nanowire composite film ELECTRODEPOSITION corrosion resistance
下载PDF
In-situ fabrication of particulate reinforced aluminum matrix composites under high-frequency pulsed electromagnetic field 被引量:8
14
作者 Guirong Li Yutao Zhao Qixun Dai Hongjie Zhang Hongming Wang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第5期460-463,共4页
Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturba... Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. In. situ Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using AlZr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix. Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication. 展开更多
关键词 in-situ synthesis aluminum matrix composites pulsed magnetic field THERMODYNAMICS KINETICS
下载PDF
PREPARATION AND CORROSION RESISTANCE OF NiP/TiO_2 COMPOSITE FILM ON CARBON STEEL IN SULFURIC ACID SOLUTION 被引量:3
15
作者 L.Z. Song S.Z. Song J. Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期117-123,共7页
A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion... A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed. 展开更多
关键词 electroless plating and sol-gel composite process artificial neural network NiP/TiO2 composite film corrosion resistance
下载PDF
Processing of RZ5-10wt%TiC in-situ magnesium matrix composite 被引量:4
16
作者 Deepak Mehra M.M.Mahapatra S.P.Harsha 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第1期100-105,共6页
This paper discusses processing in-situ RZ5-10wt%TiC composite fabricated by self-propagating high temperature(S.H.S)method where RZ5 Mg alloy was the matrix and TiC as reinforcement.The purpose of this study is to im... This paper discusses processing in-situ RZ5-10wt%TiC composite fabricated by self-propagating high temperature(S.H.S)method where RZ5 Mg alloy was the matrix and TiC as reinforcement.The purpose of this study is to improve the mechanical properties and wear resistance of the RZ5 alloy used in aerospace application by adding TiC particles.The wear test was performed using pin-on-disc apparatus against 600 grit abrasive paper by varying the sliding distance and applied load.The composite was microstructurally characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDS).The results exhibited that the tensile strength and hardness of the RZ5-10wt%TiC composite increased considerably while grain size decreased compare to the unreinforced RZ5 alloy.The SEM based fractography indicated mixed mode(quasi-cleavage and ductile feature)failure of the composite. 展开更多
关键词 in-situ MMC Tensile strength composite REINFORCEMENT
下载PDF
Fabrication and Characterization of FeNiCr Matrix-TiC Composite for Polishing CVD Diamond Film 被引量:3
17
作者 Zhuji Jin Zewei Yuan Renke Kang Boxian Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期319-324,共6页
Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost. By this method CVD diamond film is polished through being simply pr... Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost. By this method CVD diamond film is polished through being simply pressed against a metal disc rotating at a high speed utilizing the thermochemical reaction occurring as a result of dynamic friction between them in the atmosphere. However, the relatively soft materials such as stainless steel, cast iron and nickel alloy widely used for polishing CVD diamond film are easy to wear and adhere to diamond film surface, which may further lead to low efficiency and poor polishing quality. In this paper, FeNiCr matrix-TiC composite used as grinding wheel for polishing CVD diamond film was obtained by combination of mechanical alloying (MA) and spark plasma sintering (SPS). The process of ball milling, composition, density, hardness, high-temperature oxidation resistance and wear resistance of the sintered piece were analyzed. The results show that TiC was introduced in MA-SPS process and had good combination with FeNiCr matrix and even distribution in the matrix. The density of composite can be improved by mechanical alloying. The FeNiCr matrix-TiC composite obtained at 1273 K was found to be superior to at 1173 K sinterin8 in hardness, high-temperature oxidation resistance and wearability. These properties are more favorable than SUS304 for the preparation of high-performance grinding wheel for polishing CVD diamond film. 展开更多
关键词 CVD diamond film FeNiCr matrix-TiC composite Spark plasma sintering Mechanical alloying
下载PDF
In-situ Composite Based on Poly (ethylene terephthalate),Polyamide and Polyethylene with Microfibres Formed through Extrusion and Hot Stretching 被引量:8
18
作者 ZhongmingLI MingboYANG +2 位作者 RuiHUANG AiLU JianminFENG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期419-422,共4页
In-situ composites based on dispersed poly (ethylene terephthalate) (PET) or polyamide (PA), and continuous polyethylene (PE) were prepared through a single screw extruder of Haake rheometer system with a rod-die rela... In-situ composites based on dispersed poly (ethylene terephthalate) (PET) or polyamide (PA), and continuous polyethylene (PE) were prepared through a single screw extruder of Haake rheometer system with a rod-die relatively small in diameter. The extrudate was drawn at a drawing ratio of 3.1, and then quickly cooled in cold water. The specimens were obtained by injection molding at processing temperatures less than 190℃, far below the melting temperature of PET (265℃) and PA (230℃), which can maintain the solid state of PET and PA microfiber phase in the composites. Morphological observation with scanning electron microscopy (SEM) indicated that PET and PA can more or less form in-situ microfibers at compositions studied (0~20 wt pct PET or PA), and especially, PET and PA were almost deformed into fibers at the concentration of 15 wt pct. Tensile strength and modulus of the blends reinforced by PET or PA microfibers showed to be increased from the tensile test results. The most noticeable improvement of the tensile properties occurred at 15 wt pct of PET in PET/PE system, corresponding to the highest microfiber content, where the tensile strength reached 32.5 MPa, whereas only 19.5 MPa for the pure PE. 展开更多
关键词 in-situ composite. Polyethylene. Polyamide Polyterephthalate
下载PDF
Nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film-shaped memory alloy composite plate subjected to in-plane stochastic excitation 被引量:2
19
作者 竺致文 张庆昕 许佳 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期165-171,共7页
The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared b... The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared based on an SMA plate, and combined into a GMF-SMA composite plate. The Van der Pol item is improved to explain the hysteretic phenomena of GMF and SMA, and the nonlinear dynamics model of a GMF-SMA composite cantilever plate subjected to in-plane stochastic excitation is developed. The stochastic stability of the system is analyzed, and the steady-state probability density function of the dynamic response of the system is obtained. The condition of stochastic Hopf bifurcation is discussed, the reliability function of the system is provided, and then the probability density of the first-passage time is given. Finally, the stochastic optimal control strategy is proposed by the stochastic dynamic programming method. Numerical simulation shows that the stability of the trivial solution varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the system's reliability is improved through stochastic optimal control, and the first- passage time is delayed. A GMF-SMA composite plate combines the advantages of GMF and SMA, and can reduce vibration through passive control and active control effectively. The results are helpful for the engineering applications of GMF-SMA composite plates. 展开更多
关键词 giant magnetostrictive film shape memory alloy composite cantilever plate stochastic Hopf bifurcation optimal control
下载PDF
In-situ composite Cu-Cr contact cables with high strength and high conductivity 被引量:3
20
作者 PENGLiming MAOXiemin +1 位作者 XUKuangdi DINGWenjiang 《Rare Metals》 SCIE EI CAS CSCD 2002年第1期62-66,共5页
In order to develop a new type of contact cable with high strengthand high electrical conductivity, Cu-Cr alloy series were selected asmaterials and cu-Cr alloy castings were produced by means ofdirectional solidifica... In order to develop a new type of contact cable with high strengthand high electrical conductivity, Cu-Cr alloy series were selected asmaterials and cu-Cr alloy castings were produced by means ofdirectional solidification continu- ous casting (DSCC) process. theresults show that the fibrillar strengthening phase, β-Cr, orderlyarranges among the copper matrix phase along the wire direction; andmicrostructure of in-situ composite forms, which retains the basicproperty of good conductivity of the copper matrix and meanwhileobtains the strengthening effect ofβ-Cr phase. 展开更多
关键词 contact cable in-situ composite directional solidification continuouscasting process Cu-Cr alloy
下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部