Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
[Objective] The aim was to research effects of bamboo split curing method and steely barn curing method on quality of yellow sun-cured tobacco, providing scientific references for optimization of curing technology of ...[Objective] The aim was to research effects of bamboo split curing method and steely barn curing method on quality of yellow sun-cured tobacco, providing scientific references for optimization of curing technology of yellow sun-cured tobacco. [method] The tobaccos were divided into two groups treated with two methods and the related indices of treated tobaccos were then measured to evaluate effects of curing methods on quality of yellow sun-cured tobacco. [Result] Tobaccos treated with two methods were all dominated by reddish yellow and yellow; exterior quality differed little. In detail, total sugar and reducing sugar in an average level in three locations were all higher with method A than those with method B, but nicotine and total N were lower; comprehensive chemical components in group with method B proved more appropriate with higher K. In addition, sensory qualities of leaves in moderate and bottom locations were better with method B compared with method A; sensory quality of top leaves was better; comprehensive sensory quality of leaves treated with method B proved better. On the other hand, cost for method A was 2.82 times of method B; the area of sun-curing field was 3.27 times and manage- ment work was 1.77 times, which indicated that method B is low-cost and time-saving, which would be a guarantee of tobacco quality. [Conclusion] The research provides scientific references for rational use of tobacco resources and optimization of sun-curing technology.展开更多
For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical...For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.展开更多
Curing methods are one of the most important factors in determining the quality and compactness of cover concrete.The effect of curing methods on the water absorption and sorptivity coefficient of cover concrete with ...Curing methods are one of the most important factors in determining the quality and compactness of cover concrete.The effect of curing methods on the water absorption and sorptivity coefficient of cover concrete with the substitution ratio of fly ash(FA)and ground granulated blast slag(GGBS)for cement between 30 wt%and 40 wt%was studied by capillary water absorption test.The vacuum saturation test and mercury intrusion test were employed to characterize these differences in the pore structure of cover concrete under different curing methods.With further analysis of the compactness of microstructure by SEM,the mechanism of the impact of curing methods on the permeability of cover concrete was revealed.The results obtained indicate that the effect of curing methods on the water absorption,sorptivity coefficient and porosity of cover concrete shows the trend of natural curing>cover curing>water curing>standard curing.It is also shown that reasonable curing is advantageous to reduce the porosity and permeability of cover concrete.In natural curing conditions,the appearance of porosity increasing and pore structure coarsening is more critical for covering concrete with mineral admixtures than for pure cement concrete.Therefore,the permeability of cover concrete with mineral admixtures is more sensitive to the early-age curing methods.展开更多
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ...In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.展开更多
This paper studies the interface curing stresses between polymethyl methacrylate (PMMA) and composite by means of digital speckle correlation method (DSCM).A new method by combining DSCM with the marker points is deve...This paper studies the interface curing stresses between polymethyl methacrylate (PMMA) and composite by means of digital speckle correlation method (DSCM).A new method by combining DSCM with the marker points is developed to measure the interface curing stresses,and the measurement principle is introduced.The interface curing stresses between PMMA and composite with different curing bonding conditions are measured and analyzed,this indicates that the residual stress for furnace heating and furnace cooling is the smallest.Finally,the measurement error is discussed by means of finite element method,the influences of glass microsphere between adhesive and PMMA can be ignored.展开更多
With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The...With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.展开更多
Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test ...Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.展开更多
Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can c...Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can cause thermal gradients in the composite,potentially leading to undesired residual stresses which can cause shrinkage and warpage.In the present numerical study of these processes,a one-dimensional finite difference method is used to predict the temperature evolution and the degree of cure in the course of the resin polymerization;the effect of some parameters on the thermal gradient is then analyzed,namely:the fiber nature,the use of multiple layers of reinforcement with different thermal properties and also the temperature cycle variation.The validity of this numerical model is tested by comparison with experimental and numerical results in the existing literature.展开更多
In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and ge...In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and get good characterization results,an improving specimen preparation method of freezing etching was developed.Size,distribution and morphology of NANDS were directly visualized.Some information of particle dispersion feature and particle density can also be obtained.Reproductivity of the FETEM characterization is excellent.Comparing with laser scattering method,which is liable to give positive error especially for small size particle anchoring disperser,FETEM characterization can give more accurate measurement of particle size.Moreover,FETEM can give dispersion feature of nanoparticle in non-aqueous medium.展开更多
[Objectives]To compare the benefits of different tobacco loading methods and supporting baking processes in intensive curing houses.[Methods]Flue-cured tobacco variety K326 was taken as material,and comparative experi...[Objectives]To compare the benefits of different tobacco loading methods and supporting baking processes in intensive curing houses.[Methods]Flue-cured tobacco variety K326 was taken as material,and comparative experiment on baking effects of six tobacco loading methods(traditional hanging pole,loose leaf stacking,loose leaf binding and inserting,loose leaf inserting,loose leaf net basket,loose leaf grid)was conducted.[Results]Cost of dry tobacco loading equipment for hanging pole and loose leaf stacking was 0.01 and 0.1 yuan/kg,and cost of tobacco loading by loose leaf basket reached 0.36 yuan/kg.Labor cost for baking dry tobacco by direct stacking of loose leaves reached 2.02 yuan/kg,which was the lowest,while labor cost for binding and inserting loose leaves reached 2.44 yuan/kg,which was the highest.Energy consumption cost of dry tobacco baking with loose leaf grid was 1.06 yuan/kg,which was the lowest,while baking energy consumption cost of loose leaf stacking reached 1.23 yuan/kg,which was the highest.From the perspective of baking income,loose leaf inserting reached 21.36 yuan/kg,which was the lowest,while net basket reached 27.79 yuan/kg,which was the highest,followed by grid(23.46 yuan/kg)and loose leaf binding and inserting(22.5 yuan/kg).[Conclusions]It is worth popularizing the loose leaf binding and inserting and the loose leaf grid baking.展开更多
The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative...The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO_(2) composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q_(1), Q_(2), and Q_(3)) of the coal seam. The results show that in-situ total gas content (Q_(T)) ranges from 9.48 m^(3)/t for the A2 section to 14.80 m^(3)/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q_(2) demonstrates the highest contribution to Q_(T), ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO_(2) sorption behavior, with ft coefcients (R^(2)) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q_(3)) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q_(1) and Q_(2) gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of efective gas management strategies and enhance the safety and efciency of coal mining operations.展开更多
In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on ...In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.展开更多
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金Supported by China Tobacco Yunnan Indutrial Co.Ltd Scientific Program(2010YL02)~~
文摘[Objective] The aim was to research effects of bamboo split curing method and steely barn curing method on quality of yellow sun-cured tobacco, providing scientific references for optimization of curing technology of yellow sun-cured tobacco. [method] The tobaccos were divided into two groups treated with two methods and the related indices of treated tobaccos were then measured to evaluate effects of curing methods on quality of yellow sun-cured tobacco. [Result] Tobaccos treated with two methods were all dominated by reddish yellow and yellow; exterior quality differed little. In detail, total sugar and reducing sugar in an average level in three locations were all higher with method A than those with method B, but nicotine and total N were lower; comprehensive chemical components in group with method B proved more appropriate with higher K. In addition, sensory qualities of leaves in moderate and bottom locations were better with method B compared with method A; sensory quality of top leaves was better; comprehensive sensory quality of leaves treated with method B proved better. On the other hand, cost for method A was 2.82 times of method B; the area of sun-curing field was 3.27 times and manage- ment work was 1.77 times, which indicated that method B is low-cost and time-saving, which would be a guarantee of tobacco quality. [Conclusion] The research provides scientific references for rational use of tobacco resources and optimization of sun-curing technology.
基金financially supported by the National Key R&D Program of China(No.2022YFC2906100).
文摘For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.
基金The authors would like to acknowledge the financial support provided by the National Key R&D Program of China(Grant number2018YFB1600100)this study is also funded by Shandong Transportation Science and Technology Plan(grant number 2018B44).
文摘Curing methods are one of the most important factors in determining the quality and compactness of cover concrete.The effect of curing methods on the water absorption and sorptivity coefficient of cover concrete with the substitution ratio of fly ash(FA)and ground granulated blast slag(GGBS)for cement between 30 wt%and 40 wt%was studied by capillary water absorption test.The vacuum saturation test and mercury intrusion test were employed to characterize these differences in the pore structure of cover concrete under different curing methods.With further analysis of the compactness of microstructure by SEM,the mechanism of the impact of curing methods on the permeability of cover concrete was revealed.The results obtained indicate that the effect of curing methods on the water absorption,sorptivity coefficient and porosity of cover concrete shows the trend of natural curing>cover curing>water curing>standard curing.It is also shown that reasonable curing is advantageous to reduce the porosity and permeability of cover concrete.In natural curing conditions,the appearance of porosity increasing and pore structure coarsening is more critical for covering concrete with mineral admixtures than for pure cement concrete.Therefore,the permeability of cover concrete with mineral admixtures is more sensitive to the early-age curing methods.
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProject(51974360)supported by the National Natural Science Foundation of ChinaProject(2018JJ3656)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.
基金supported by the National Basic Research Program (973 Program) of China (2011CB606105)
文摘This paper studies the interface curing stresses between polymethyl methacrylate (PMMA) and composite by means of digital speckle correlation method (DSCM).A new method by combining DSCM with the marker points is developed to measure the interface curing stresses,and the measurement principle is introduced.The interface curing stresses between PMMA and composite with different curing bonding conditions are measured and analyzed,this indicates that the residual stress for furnace heating and furnace cooling is the smallest.Finally,the measurement error is discussed by means of finite element method,the influences of glass microsphere between adhesive and PMMA can be ignored.
基金founded by Project of National Natural Science Foundation of China “Study on the Anelastic Strain Recovery Compliance in the In-situ Stress Measurement by ASR Method”, No 41404080the Project of Geological Survey “Survey on the In-situ Stress Field in Southern China”
文摘With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.
文摘Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.
文摘Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can cause thermal gradients in the composite,potentially leading to undesired residual stresses which can cause shrinkage and warpage.In the present numerical study of these processes,a one-dimensional finite difference method is used to predict the temperature evolution and the degree of cure in the course of the resin polymerization;the effect of some parameters on the thermal gradient is then analyzed,namely:the fiber nature,the use of multiple layers of reinforcement with different thermal properties and also the temperature cycle variation.The validity of this numerical model is tested by comparison with experimental and numerical results in the existing literature.
基金Funded by National Natural Science Foundation of China(No.50572121) Key Pre-research Foundation of Weapon and Equipment(No. 9140A27010206JB35)
文摘In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and get good characterization results,an improving specimen preparation method of freezing etching was developed.Size,distribution and morphology of NANDS were directly visualized.Some information of particle dispersion feature and particle density can also be obtained.Reproductivity of the FETEM characterization is excellent.Comparing with laser scattering method,which is liable to give positive error especially for small size particle anchoring disperser,FETEM characterization can give more accurate measurement of particle size.Moreover,FETEM can give dispersion feature of nanoparticle in non-aqueous medium.
文摘[Objectives]To compare the benefits of different tobacco loading methods and supporting baking processes in intensive curing houses.[Methods]Flue-cured tobacco variety K326 was taken as material,and comparative experiment on baking effects of six tobacco loading methods(traditional hanging pole,loose leaf stacking,loose leaf binding and inserting,loose leaf inserting,loose leaf net basket,loose leaf grid)was conducted.[Results]Cost of dry tobacco loading equipment for hanging pole and loose leaf stacking was 0.01 and 0.1 yuan/kg,and cost of tobacco loading by loose leaf basket reached 0.36 yuan/kg.Labor cost for baking dry tobacco by direct stacking of loose leaves reached 2.02 yuan/kg,which was the lowest,while labor cost for binding and inserting loose leaves reached 2.44 yuan/kg,which was the highest.Energy consumption cost of dry tobacco baking with loose leaf grid was 1.06 yuan/kg,which was the lowest,while baking energy consumption cost of loose leaf stacking reached 1.23 yuan/kg,which was the highest.From the perspective of baking income,loose leaf inserting reached 21.36 yuan/kg,which was the lowest,while net basket reached 27.79 yuan/kg,which was the highest,followed by grid(23.46 yuan/kg)and loose leaf binding and inserting(22.5 yuan/kg).[Conclusions]It is worth popularizing the loose leaf binding and inserting and the loose leaf grid baking.
基金supported by China Scholarship Council(202006430006)the International Postgraduate Tuition Award(IPTA)of the University of Wollongongthe research funding provided by the Mine A,ACARP Project C35015 and Coal Services Health and Safety Trust.
文摘The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO_(2) composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q_(1), Q_(2), and Q_(3)) of the coal seam. The results show that in-situ total gas content (Q_(T)) ranges from 9.48 m^(3)/t for the A2 section to 14.80 m^(3)/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q_(2) demonstrates the highest contribution to Q_(T), ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO_(2) sorption behavior, with ft coefcients (R^(2)) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q_(3)) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q_(1) and Q_(2) gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of efective gas management strategies and enhance the safety and efciency of coal mining operations.
基金sponsored by the National Natural Science Foundation of China(42002181)projecta public bidding project of 2020 Shanxi Provincial Science and Technology Program(20201101002-03).
文摘In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.