期刊文献+
共找到34,071篇文章
< 1 2 250 >
每页显示 20 50 100
In-situ fabrication SnO2/SnS2 heterostructure for boosting the photocatalytic degradation of pollutants 被引量:3
1
作者 Ying Liu Donglai Pan +5 位作者 Mingwen Xiong Ying Tao Xiaofeng Chen Dieqing Zhang Yu Huang Guisheng Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1554-1563,共10页
Heterostructure photocatalysts with a built-in electric field have become one of the most promising strategies to enhance photogenerated electron-hole pair separation. However, close contact between the two active com... Heterostructure photocatalysts with a built-in electric field have become one of the most promising strategies to enhance photogenerated electron-hole pair separation. However, close contact between the two active components of heterogeneous photocatalysts remains a problem. Herein, the in-situ fabrication of an SnO2/SnS2 heterostructure photocatalyst was performed;the structure showed enhanced photocatalytic performance resulting from the tight-contact heterostructures. The results of photoelectrochemical measurements further verified that a tight-contact heterostructure improved the separation of photogenerated electron-hole pairs. The results of EIS Bode plots also demonstrated that such in-situ fabricated SnO2/SnS2 samples exhibited the longest carrier lifetime(41.6 μs) owing to the intimate interface of SnO2/SnS2 heterostructures. 展开更多
关键词 in-situ fabrication SnO2/SnS2 heterostructure PHOTO-DEGRADATION Photogenerated carrier separation
下载PDF
In-situ fabrication of particulate reinforced aluminum matrix composites under high-frequency pulsed electromagnetic field 被引量:8
2
作者 Guirong Li Yutao Zhao Qixun Dai Hongjie Zhang Hongming Wang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第5期460-463,共4页
Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturba... Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. In. situ Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using AlZr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix. Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication. 展开更多
关键词 in-situ synthesis aluminum matrix composites pulsed magnetic field THERMODYNAMICS KINETICS
下载PDF
2D multifunctional devices:from material preparation to device fabrication and neuromorphic applications 被引量:1
3
作者 Zhuohui Huang Yanran Li +3 位作者 Yi Zhang Jiewei Chen Jun He Jie Jiang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期91-118,共28页
Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-d... Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems. 展开更多
关键词 2D material micro–nano fabrication multifunctional system neuromorphic electronics artificial intelligence
下载PDF
Controlled fabrication of freestanding monolayer SiC by electron irradiation
4
作者 笪蕴力 罗瑞春 +2 位作者 雷宝 季威 周武 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期31-37,共7页
The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications.Electron irradiation has been demonstrated as an effective method for prepa... The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications.Electron irradiation has been demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise.It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities.Here,we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane.By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope(STEM),we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice.The resultant SiC monolayers seamlessly connect with the graphene lattice,forming a planar structure distinct by a wide direct bandgap.Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion,providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional(2D)monolayers. 展开更多
关键词 monolayer SiC 2D semiconductor in-situ growth in-situ STEM defect engineering graphene nanopores
下载PDF
Novel fabrication techniques for ultra-thin silicon based flexible electronics
5
作者 Ju Young Lee Jeong Eun Ju +2 位作者 Chanwoo Lee Sang Min Won Ki Jun Yu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期116-149,共34页
Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading... Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications. 展开更多
关键词 flexible electronics silicon fabrication technique top-down approach bottom-up approach
下载PDF
Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization 被引量:3
6
作者 Zhengchi Yin Xiaoke Wu +5 位作者 Yanwei Yang Huayu Zhang Wangtao Li Ruimin Zhu Qiancheng Zheng Zhengbao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期101-110,共10页
Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra... Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports. 展开更多
关键词 Dual-layer PES hollow fiber in-situ crystallization ZIF-8 membrane Gas separation ZNO
下载PDF
Effect of solution treatment on the microstructure,phase transformation behavior and functional properties of NiTiNb ternary shape memory alloys fabricated via laser powder bed fusion in-situ alloying
7
作者 Rui Xi Hao Jiang +5 位作者 Guichuan Li Zhihui Zhang Huiliang Wei Guoqun Zhao Jan Van Humbeeck Xiebin Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期202-223,共22页
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap... Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts. 展开更多
关键词 shape memory alloy NiTiNb laser powder bed fusion in-situ alloying heat treatment
下载PDF
Recent advances in fabrication and functions of neuromorphic system based on organic field effect transistor
8
作者 Yaqian Liu Minrui Lian +1 位作者 Wei Chen Huipeng Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期273-295,共23页
The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and... The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics. 展开更多
关键词 organic field effect transistor neuromorphic systems synaptic transistor sensory perception systems device fabrication
下载PDF
Near-zero-adhesion-enabled intact wafer-scale resist-transfer printing for high-fidelity nanofabrication on arbitrary substrates
9
作者 Zhiwen Shu Bo Feng +5 位作者 Peng Liu Lei Chen Huikang Liang Yiqin Chen Jianwu Yu Huigao Duan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期313-326,共14页
There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,a... There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications. 展开更多
关键词 resist-based transfer printing near-zero adhesion critical surface energy wafer-scale nanofabrication in situ fabrication optoelectronic devices
下载PDF
Identification of Stability Domains for Flow Parameters in Fused Filament Fabrication Using Acoustic Emission
10
作者 Zhen Li Lei Fu +2 位作者 Xinfeng Zou Baoshan Huang Fengshou Gu 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第3期225-235,共11页
In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow sta... In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow state is affected by multiple parameters,with temperature and volumetric flow rate(VFR)being the most critical.The study explores the stable extrusion of flow with a highly sensitive acoustic emission(AE)sensor so that AE signals generated by the friction in the annular region can reflect the flow state more effectively.Nevertheless,the large volume and broad frequency range of the data present processing challenges.This study proposes a method that initially selects short impact signals and then uses the Fast Kurtogram(FK)to identify the frequency with the highest kurtosis for signal filtration.The results indicate that this approach significantly enhances processing speed and improves feature extraction capabilities.By correlating AE characteristics under various parameters with the quality of extruded raster beads,AE can monitor the real-time state of material flow.This study offers a concise and efficient method for monitoring the state of raster beads and demonstrates the potential of online monitoring of the flow states. 展开更多
关键词 acoustic emission center frequency fast kurtogram fused filament fabrication stability domains
下载PDF
一种面向联盟链Hyperledger Fabric的并发冲突事务优化方法
11
作者 吴海博 刘辉 +1 位作者 孙毅 李俊 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期2110-2126,共17页
随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向... 随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响.提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量.针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制.在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案.Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%.此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力. 展开更多
关键词 并发冲突 区块链 Hyperledger fabric 事务调度 冲突检测
下载PDF
基于Fabric的海量交易数据上链预处理机制 被引量:1
12
作者 刘颖 马玉鹏 +2 位作者 赵凡 王轶 蒋同海 《计算机工程》 CSCD 北大核心 2024年第1期39-49,共11页
Hyperledger Fabric是一种国内外广泛使用的联盟链框架,在基于Fabric技术的一些业务中具有协同组织众多、交易操作频繁、事务冲突增加等特点。Fabric采用的多版本并发控制技术能够在一定程度上解决部分交易冲突,提升系统并发性,但其机... Hyperledger Fabric是一种国内外广泛使用的联盟链框架,在基于Fabric技术的一些业务中具有协同组织众多、交易操作频繁、事务冲突增加等特点。Fabric采用的多版本并发控制技术能够在一定程度上解决部分交易冲突,提升系统并发性,但其机制不完善,会出现部分交易数据无法正常上链存储的问题。为了实现海量交易数据完整、高效、可信的上链存储,提出一种基于Fabric预言机的数据上链预处理机制。设计海量数据冲突预处理(MCPP)方法,通过检测、监听、延时提交、事务加锁、重排序缓存等方式实现主键冲突交易数据的完整上链。引入数据传输保障措施,在传输过程中利用非对称加密技术防止恶意节点伪造认证信息,确保交易数据链外处理前后的一致性。通过理论分析和实验结果表明,该机制可有效解决联盟链平台中海量交易数据上链时的并发冲突问题,当交易数据规模达到1 000和10 000时,MCPP的时效性比LMLS提高了38%和21.4%,且成功率接近100%,具有高效性和安全性,同时在无并发冲突情况下不影响Fabric系统性能。 展开更多
关键词 联盟链 Hyperledger fabric平台 预言机 海量交易数据 并发冲突 数据传输
下载PDF
基于CP-ABE算法的Fabric隐私保护模型 被引量:2
13
作者 王有恒 王瑞民 张建辉 《计算机工程与设计》 北大核心 2024年第4期961-966,共6页
传统区块链系统缺少对区块数据的隐私保护。结合CP-ABE(基于属性加密的密文策略)算法和IPFS(星际文件系统),提出一种可以对Fabric区块链实现访问控制的隐私保护模型CP-PPM。CP-PPM的数据所有者可以灵活设置访问控制策略。仿真结果表明,... 传统区块链系统缺少对区块数据的隐私保护。结合CP-ABE(基于属性加密的密文策略)算法和IPFS(星际文件系统),提出一种可以对Fabric区块链实现访问控制的隐私保护模型CP-PPM。CP-PPM的数据所有者可以灵活设置访问控制策略。仿真结果表明,与现有Fabric区块链系统相比,CP-PPM模型支持细粒度的访问控制,具有更强的隐私保护效果;CP-ABE算法可以安全初始化,对数据的加解密效率更高,同时增强了区块链系统的存储性能。 展开更多
关键词 CP-ABE算法 fabric区块链 CP-PPM 隐私保护 IPFS 访问控制 存储优化
下载PDF
Solvent engineering towards scalable fabrication of high-quality perovskite films for efficient solar modules 被引量:4
14
作者 Zhaoyi Jiang Binkai Wang +10 位作者 Wenjun Zhang Zhichun Yang Mengjie Li Fumeng Ren Tahir Imran Zhenxing Sun Shasha Zhang Yiqiang Zhang Zhiguo Zhao Zonghao Liu Wei Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期689-710,I0015,共23页
Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,th... Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed. 展开更多
关键词 Solvent engineering Scalable fabrication Perovskite film Solar cell Module
下载PDF
Circularly Polarized Light-Enabled Chiral Nanomaterials:From Fabrication to Application 被引量:2
15
作者 Changlong Hao Gaoyang Wang +4 位作者 Chen Chen Jun Xu Chuanlai Xu Hua Kuang Liguang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期171-189,共19页
For decades,chiral nanomaterials have been extensively studied because of their extraordinary properties.Chiral nanostructures have attracted a lot of interest because of their potential applications including biosens... For decades,chiral nanomaterials have been extensively studied because of their extraordinary properties.Chiral nanostructures have attracted a lot of interest because of their potential applications including biosensing,asymmetric catalysis,optical devices,and negative index materials.Circularly polarized light(CPL)is the most attractive source for chirality owing to its high availability,and now it has been used as a chiral source for the preparation of chiral matter.In this review,the recent progress in the field of CPL-enabled chiral nanomaterials is summarized.Firstly,the recent advancements in the fabrication of chiral materials using circularly polarized light are described,focusing on the unique strategies.Secondly,an overview of the potential applications of chiral nanomaterials driven by CPL is provided,with a particular emphasis on biosensing,catalysis,and phototherapy.Finally,a perspective on the challenges in the field of CPL-enabled chiral nanomaterials is given. 展开更多
关键词 Circularly polarized light CHIRAL NANOMATERIALS fabrication APPLICATION
下载PDF
In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing 被引量:3
16
作者 Youwen Yang Changfu Lu +3 位作者 Lida Shen Zhenyu Zhao Shuping Peng Cijun Shuai 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期629-640,共12页
Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degr... Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application. 展开更多
关键词 Laser addictive manufacture Mg-based composite Mesoporous bioglass in-situ deposition Degradation behavior
下载PDF
Recent Advances in One‑Dimensional Micro/Nanomotors:Fabrication,Propulsion and Application 被引量:2
17
作者 Yuhong Zheng He Zhao +2 位作者 Yuepeng Cai Beatriz Jurado‑Sanchez Renfeng Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期114-142,共29页
Due to their tiny size,autonomous motion and functionalize modifications,micro/nanomotors have shown great potential for environmental remediation,biomedicine and micro/nano-engineering.One-dimensional(1D)micro/nanomo... Due to their tiny size,autonomous motion and functionalize modifications,micro/nanomotors have shown great potential for environmental remediation,biomedicine and micro/nano-engineering.One-dimensional(1D)micro/nanomotors combine the characteristics of anisotropy and large aspect ratio of 1D materials with the advantages of functionalization and autonomous motion of micro/nanomotors for revolutionary applications.In this review,we discuss current research progress on 1D micro/nanomotors,including the fabrication methods,driving mechanisms,and recent advances in environmental remediation and biomedical applications,as well as discuss current challenges and possible solutions.With continuous attention and innovation,the advancement of 1D micro/nanomotors will pave the way for the continued development of the micro/nanomotor field. 展开更多
关键词 1D micro/nanomotors fabrication methods Driving mechanisms Applications
下载PDF
Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films 被引量:2
18
作者 Xi Zhang Junchi Ma +7 位作者 Wenhao Huang Jichen Zhang Chaoyang Lyu Yu Zhang Bo Wen Xin Wang Jing Ye Dongfeng Diao 《Nanotechnology and Precision Engineering》 CAS CSCD 2023年第1期1-11,共11页
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-... A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology. 展开更多
关键词 Direct flexible fabrication Graphene nanosheets film Polariton energy transfer Flexible sensor Quantum manufacturing
下载PDF
Investigating TEP as a greener alternative to NMP in Ni-rich cathode fabrication 被引量:1
19
作者 Changlong Chen Vignyatha Reddy Tatagari +1 位作者 Hao Lin Leon Shaw 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期240-245,I0007,共7页
In the past decade,the surging demand for portable electronics,electric vehicles,and stationary energy storage grids has triggered a noticeable rise in the production of Li-ion batteries(LIBs).However,this swift rise ... In the past decade,the surging demand for portable electronics,electric vehicles,and stationary energy storage grids has triggered a noticeable rise in the production of Li-ion batteries(LIBs).However,this swift rise is now hindered by relying on the use of N-methyl-2-pyrrolidone(NMP),a repro-toxic solvent,in the current cathode processing of LIBs.To overcome this challenge,here we have investigated triethyl phosphate(TEP) as a greener alternative to NMP.The compatibility with polyvinylidene fluoride(PVDF)binder,the slurry rheology,the electrode morphology and cell performance with Ni-rich cathodes are characterized.The results show that TEP-based samples possess indistinguishable characteristics in all as pects studied when compared with NMP,revealing that TEP is a promising substitute for NMP in processing Ni-rich cathodes.It is anticipated that this green solvent,TEP,will draw attention from industry in the real-world LIB application in the future. 展开更多
关键词 Triethyl phosphate Li-ion batteries Green solvent Electrode fabrication NMC622
下载PDF
Three-dimensional isotropic microfabrication in glass using spatiotemporal focusing of high-repetition-rate femtosecond laser pulses 被引量:1
20
作者 Yuanxin Tan Haotian Lv +10 位作者 Jian Xu Aodong Zhang Yunpeng Song Jianping Yu Wei Chen Yuexin Wan Zhaoxiang Liu Zhaohui Liu Jia Qi Yangjian Cai Ya Cheng 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第10期18-29,共12页
To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication,we apply the simultaneous spatiotemporal focusing(SSTF)technique to a high-repetition-rate femtosecond(fs)fiber laser system... To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication,we apply the simultaneous spatiotemporal focusing(SSTF)technique to a high-repetition-rate femtosecond(fs)fiber laser system.In the SSTF scheme,we propose a pulse compensation scheme for the fiber laser with a narrow spectral bandwidth by building an extra-cavity pulse stretcher.We further demonstrate truly 3D isotropic microfabrication in photosensitive glass with a tunable resolution ranging from 8μm to 22μm using the SSTF of fs laser pulses.Moreover,we systematically investigate the influences of pulse energy,writing speed,processing depth,and spherical aberration on the fabrication resolution.As a proof-of-concept demonstration,the SSTF scheme was further employed for the fs laser-assisted etching of complicated glass microfluidic structures with 3D uniform sizes.The developed technique can be extended to many applications such as advanced photonics,3D biomimetic printing,micro-electromechanical systems,and lab-on-a-chips. 展开更多
关键词 simultaneous spatiotemporal focusing technique pulse compensation pulse stretcher 3D isotropic fabrication chemical etching
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部