The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
SiO_(2)-based microcapsules containing hydrophobic molecules exhib-ited potential applications such as extrinsic self-healing,drug delivery,due to outstanding thermal and chemical stability of SiO_(2).However,to const...SiO_(2)-based microcapsules containing hydrophobic molecules exhib-ited potential applications such as extrinsic self-healing,drug delivery,due to outstanding thermal and chemical stability of SiO_(2).However,to construct SiO_(2)-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue,limiting their further utilization.We herein design asingle-batch route,a combined interfacial and in-situ polymerization strategy,to fabricate epoxy-containing SiO_(2)-based microcapsules with both high encapsu-lation loading and long-term structural stability.The final SiO_(2)-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step.In the subsequent in-situ polymerization step,the initial SiO_(2)-based microcapsules as seeds could efficiently harvest SiO_(2) precursors and primary SiO 2 particles to finely tune the SiO_(2) wall thickness,thereby enhancing long-term structural stability of the final SiO_(2)-based microcapsules including high thermal stability with almost no any weight loss until 250℃,and strong tolerance against nonpolar solvents such as CCl_(4) with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days.These SiO_(2)-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.展开更多
Lithium metal batteries based on solid electrolytes are considered as promising candidates with high energy density and safety.However,the weak solid-solid contact between electrolyte and electrode can easily lead to ...Lithium metal batteries based on solid electrolytes are considered as promising candidates with high energy density and safety.However,the weak solid-solid contact between electrolyte and electrode can easily lead to interface instability and lithium ions discontinuous migration,which seriously reduces the electrochemical performance of the battery.Herein,we construct a soft gel interfacial layer to improve the stability of the solid-solid interface between electrolyte and electrode by means of polyester-based monomers and imidazole-based ionic liquids.Based on this,garnet-type Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)particles as inorganic ceramic filler were introduced in the layer to obtain composite electrolytes with high ionic conductivity(up to 1.1×10^(-3)S/cm at 25℃).As a result,the assembled lithium symmetric battery of Li|THCE-15%LLZTO|Li suggests excellent cycling stability with 700 h at 0.1 mA/cm^(2)at 50℃,and the lithium metal batteries of LFP|THCE-15%LLZTO|Li delivers high initial discharge capacity of 128.2 mA·h/g with capacity retain of 75.48%after 150 cycles at 2 C.This work paves a new route to build safe and stable lithium metal batteries with synergistic introduction of composite electrolytes between electrolyte and electrode using soft gel interfacial layer and inorganic filler.展开更多
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
文摘SiO_(2)-based microcapsules containing hydrophobic molecules exhib-ited potential applications such as extrinsic self-healing,drug delivery,due to outstanding thermal and chemical stability of SiO_(2).However,to construct SiO_(2)-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue,limiting their further utilization.We herein design asingle-batch route,a combined interfacial and in-situ polymerization strategy,to fabricate epoxy-containing SiO_(2)-based microcapsules with both high encapsu-lation loading and long-term structural stability.The final SiO_(2)-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step.In the subsequent in-situ polymerization step,the initial SiO_(2)-based microcapsules as seeds could efficiently harvest SiO_(2) precursors and primary SiO 2 particles to finely tune the SiO_(2) wall thickness,thereby enhancing long-term structural stability of the final SiO_(2)-based microcapsules including high thermal stability with almost no any weight loss until 250℃,and strong tolerance against nonpolar solvents such as CCl_(4) with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days.These SiO_(2)-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.
基金supported by the National Natural Science Foundation of China(22008053,52002111)Key Research and Development Program of Hebei Province(20310601D,205A4401D)+2 种基金the Natural Science Foundation of Hebei Province(B2021208061,B2022208006,E2022208023)the Science Foundation of University of Hebei Province(BJ2020053)Beijing Natural Science Foundation(Z200011).
文摘Lithium metal batteries based on solid electrolytes are considered as promising candidates with high energy density and safety.However,the weak solid-solid contact between electrolyte and electrode can easily lead to interface instability and lithium ions discontinuous migration,which seriously reduces the electrochemical performance of the battery.Herein,we construct a soft gel interfacial layer to improve the stability of the solid-solid interface between electrolyte and electrode by means of polyester-based monomers and imidazole-based ionic liquids.Based on this,garnet-type Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)particles as inorganic ceramic filler were introduced in the layer to obtain composite electrolytes with high ionic conductivity(up to 1.1×10^(-3)S/cm at 25℃).As a result,the assembled lithium symmetric battery of Li|THCE-15%LLZTO|Li suggests excellent cycling stability with 700 h at 0.1 mA/cm^(2)at 50℃,and the lithium metal batteries of LFP|THCE-15%LLZTO|Li delivers high initial discharge capacity of 128.2 mA·h/g with capacity retain of 75.48%after 150 cycles at 2 C.This work paves a new route to build safe and stable lithium metal batteries with synergistic introduction of composite electrolytes between electrolyte and electrode using soft gel interfacial layer and inorganic filler.