期刊文献+
共找到791篇文章
< 1 2 40 >
每页显示 20 50 100
In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N_(2)
1
作者 Yunmian Xiao Changhui Song +4 位作者 Zibin Liu Linqing Liu Hanxiang Zhou Di Wang Yongqiang Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期387-409,共23页
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl... It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites. 展开更多
关键词 laser powder bed fusion layered structure composites in-situ synthesis TiN strength-plasticity synergy
下载PDF
Microstructural characterization and mechanical properties of(TiC+TiB)/TA15 composites prepared by an in-situ synthesis method
2
作者 Zhi-yong Zhang Jiao-jiao Cheng +3 位作者 Jia-qi Xie Shi-bing Liu Kun Shi Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第2期168-174,共7页
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based... Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃. 展开更多
关键词 titanium matrix composites microstucture MICROHARDNESS tensile properties in-situ synthesis
下载PDF
Microstructure and ablation behavior of Zr-based ultra-high-temperature gradient composites
3
作者 Qing-hua LIU Tian TIAN +2 位作者 Wei SUN Hong-bo ZHANG Xiang XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2889-2899,共11页
To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.Th... To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm. 展开更多
关键词 reactive melt infiltration ceramic-matrix composites gradient material MICROSTRUCTURE ablation property
下载PDF
Effects of temperature on fracture behavior of Al-based in-situ composites reinforced with Mg_2Si and Si particles fabricated by centrifugal casting 被引量:5
4
作者 李波 王开 +3 位作者 刘明翔 薛寒松 朱子宗 刘昌明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期923-930,共8页
An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on ... An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on fracture behavior of the composite were investigated. The results show that the average fraction of primary Si and Mg2Si particles in the composites is as high as 38%, and ultimate tensile strengths (UTS) of the composites first increase then decrease with the increase of test temperature. Microstructures of broken specimens show that both the particle fracture and the interface debonding affect the fracture behavior of the composites, and the interface debonding becomes the dominant fracture mechanism with increasing test temperature. Comparative results indicate that rich particles in the composites and excellent interface strength play great roles in enhancing tensile property by preventing the movement of dislocations. 展开更多
关键词 aluminum based in-situ composites fracture behavior centrifugal casting high temperature
下载PDF
Microstructure evolution and nitrides precipitation in in-situ Ti_2 AlN/TiAl composites during isothermal aging at 900°C 被引量:3
5
作者 刘懿文 胡锐 +2 位作者 张铁邦 寇宏超 李金山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1372-1378,共7页
Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃... Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃ for 24 h after being heat treated at 1400 ℃ for 0.5 h. The in-situ composites consist of γ+α2 lamellar colonies, equiaxed y grains and Ti2AlN reinforcements. Matrix with nearly fully lamellar structure formed after solution and subsequently aging treatment. With the increase of Ti2AlN content, the nearly fully lamellar structure becomes instable for the aged composites. According to TEM study, fine Ti2AlN precipitates are found to distribute at the grain boundaries of lamellar colony. Needle-like Ti3AlN precipitates arrange in line with growing axis parallel to [001] direction of the γ-TiAl matrix and another needle-like Ti3AlN precipitates with lager size distribute at the dislocations. Key words: 展开更多
关键词 TiAl composites Ti2AlN in-situ synthesis microstructure PRECIPITATES aging treatment
下载PDF
Effect of Ti-Si-Mg-Al wire on microstructure and mechanical properties of plasma arc in-situ welded joint of SiC_p/Al composites 被引量:3
6
作者 雷玉成 薛厚禄 +1 位作者 胡文祥 闫久春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期305-311,共7页
The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as ... The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as plasma gas and Ti-Si-Mg-A1 flux-cored wires as filled composites. Weldments were submitted to tensile test. Meanwhile, the macro morphology and microstructure of the joints were examined. The result shows that the formation ofneedie-like harmful phase A14C3 is effectively inhibited and the wettability of molten pool is improved by adding Ti-Si-Mg-A1 flux-cored wires. With 15Ti-5Si-5Mg-A1 flux-cored wire as filled composite, the maximum tensile strength of the welded joint is 267 MPa, which is up to 83% that of the matrix composites under annealed condition. 展开更多
关键词 plasma arc in-situ welding aluminium matrix composites Ti-Si-Mg-A1 flux-cored wire
下载PDF
In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites 被引量:2
7
作者 李海鹏 范佳薇 +3 位作者 康建立 赵乃勤 王雪霞 李宝娥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2331-2336,共6页
Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed tha... Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix. 展开更多
关键词 aluminum matrix composites carbon nanotubes chemical vapor deposition in-situ synthesis
下载PDF
Preparation and wear properties of TiB_2/Al-30Si composites via in-situ melt reactions under high-energy ultrasonic field 被引量:3
8
作者 张松利 董宪伟 +5 位作者 赵玉涛 刘满平 陈刚 张振坤 张宇荧 高雪华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3894-3900,共7页
TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The ... TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing. 展开更多
关键词 TiB2/Al-30Si composite in-situ melt reaction high-energy ultrasonic field wear properties
下载PDF
Effects of two modification methods on the mechanical properties of wood flour/recycled plastic blends composites: addition of thermoplastic elastomer SEBS-g-MAH and in-situ grafting MAH 被引量:1
9
作者 宋永明 王清文 +2 位作者 韩广平 王海刚 高华 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第3期373-378,399,400,共8页
The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends com... The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends composites was investigated. Recycled plastic polypro-pylene (PP), high-density polyethylene (HDPE) and polystyrene (PS), were mixed with wood flour in a high speed blender and then extruded by a twin/single screw tandem extruder system to form wood flour/recycled plastic blends composites. Results show that the impact properties of the composites were improved more significantly by using SEBS-g-MAH compatibilizer than by using the mixtures of MAH and DCP via reactive blending in situ. However, contrary results were ob-served on the tensile and flexural properties of the corresponding com-posites. In General, the mechanical properties of composites made from recycled plastic blends were inferior to those made from virgin plastic blends, especially in elongation break. The morphological study verified that the interfacial adhesion or the compatibility of plastic blends with wood flour was improved by adding SEBS-g-MAH or in-situ grafting MAH. A better interfacial bonding between PP, HDPE, PS and wood flour was obtained by in-situ grafting MAH than the addition of SEBS-g-MAH. In-situ grafting MAH can be considered as a potential way of increasing the interfacial compatibility between plastic blends and wood flour. The storage modulus and damping factor of composites were also characterized through dynamic mechanical analysis (DMA). 展开更多
关键词 COMPATIBILIZER composites in-situ grafting recycled plastic blends wood flour
下载PDF
In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing 被引量:3
10
作者 Youwen Yang Changfu Lu +3 位作者 Lida Shen Zhenyu Zhao Shuping Peng Cijun Shuai 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期629-640,共12页
Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degr... Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application. 展开更多
关键词 Laser addictive manufacture Mg-based composite Mesoporous bioglass in-situ deposition Degradation behavior
下载PDF
Investigation into machining performance of microstructurally engineered in-situ particle reinforced magnesium matrix composite 被引量:2
11
作者 S.K.Sahoo B.N.Sahoo S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期916-935,共20页
Magnesium and magnesium in-situ composites have significant potential in the application of design and manufacturing for automotive and aerospace industries because of their high specific strength and reduced fuel con... Magnesium and magnesium in-situ composites have significant potential in the application of design and manufacturing for automotive and aerospace industries because of their high specific strength and reduced fuel consumption.But there are many challenges for machining of Mg based alloys and composites because of the high tendency of fire and oxidation.These challenges can be minimized through microstructural engineering.In this present study,the machining performances of AZ91 Mg alloy and in-situ hybrid TiC+TiB_(2)reinforced AZ91 metal matrix composite was investigated.The effectβ-Mg_(17)Al_(12)phases and grain refinement with and without in-situ particles on machinability were studied through microstructural engineering via aging and friction stir processing.The end milling operation was carried out at different cutting speeds ranging from 25 mm/min to 90 mm/min under dry environment by using an AlTiN-coated tungsten carbide tool.The optimum cutting speed for machining was found to be 75 mm/min based on the surface roughness values of all conditioned materials.The base material with dendritic microstructure was found to have poor machinability in terms of inadequate surface finish and edge-burrs formation.The combined effect of in-situ TiC+TiB_(2)particles addition and grain refinement enhanced the machining performance of the material with superior surface finish,negligible edge-burr formation and better tool wear resistance.The influence of in-situ TiC+TiB_(2)particles,β-Mg_(17)Al_(12)phases and grain refinement on machining characteristics are explained based on the tool wear mechanisms,chip behavior and machining induced affected zone. 展开更多
关键词 MAGNESIUM in-situ composite END-MILLING Tool wear Chip morphology
下载PDF
Tuning energy output of PTFE/Al composite materials through gradient structure 被引量:1
12
作者 Yao-feng Mao Qian-qian He +3 位作者 Jian Wang Chuan-hao Xu Jun Wang Fu-de Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期134-142,共9页
As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In thi... As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al. 展开更多
关键词 PTFE/Al composite gradient structure Radial gradient Pressure output
下载PDF
Anti-penetration performance of high entropy alloy–ceramic gradient composites 被引量:6
13
作者 Wen-rui Wang Hui-fa Xie +3 位作者 Lu Xie Han-lin Li Xiao Yang Yi-nan Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第11期1320-1328,共9页
A high-entropy alloy–ceramic gradient composite of TiC–TiB_2/75vol% Al_(0.3) CoCrFe Ni was successfully prepared by combustion synthesis under an ultra-high gravity field, which is a low-cost method with high effici... A high-entropy alloy–ceramic gradient composite of TiC–TiB_2/75vol% Al_(0.3) CoCrFe Ni was successfully prepared by combustion synthesis under an ultra-high gravity field, which is a low-cost method with high efficiency. The ceramic particles were gradient distributed in the Al_(0.3) CoCrFe Ni matrix, and the hardness of the composite material gradually decreased along the thickness direction. The anti-penetration performance of the gradient composites was simulated using the ANSYS/LS-DYNA explicit simulation program. The results demonstrate that the distribution of the ceramic particles strongly affected the mechanical properties and the anti-penetration performance of the composites. With the same total ceramic volume fraction, the gradient composites exhibit better anti-penetration performance than the corresponding ceramic–metal interlayer composites. The more uneven the ceramic distribution, the greater the elastic modulus and yield stress of the surface layer and, thus, the better the anti-penetration performance. 展开更多
关键词 COMBUSTION synthesis gradient composite ANTI-PENETRATION PERFORMANCE NUMERICAL simulation
下载PDF
Structure and Mechanical Properties of Al-based Gradient Composites Reinforced with Primary Si and Mg_2Si Particles through Centrifugal Casting 被引量:3
14
作者 翟彦博 MA Xiuteng MEI Zhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期813-818,共6页
The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were inv... The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were investigated. Structurally, the composites are divided into two zones: a reinforced zone with the high volume fraction of primary Si and Mg2Si particles and an unreinforced zone with no or a few particles. In the reinforced zone, the primary particles are evenly distributed, with the sizes of the primary Si particles 80-120 μm, and that of primary Mg2Si particles 20-50 μm. The properties test results show the reinforced zone has higher Rockwell hardness and better wear resistance than the unreinforced zone, due to the complementary reinforcement relationship between the primary Si and Mg2Si particles and their high volume fraction. 展开更多
关键词 gradient composites centrifugal casting primary Si primary Mg2Si
下载PDF
A Novel Technique for Preparation of Electrically Conductive ABS/Cu Polymeric Gradient Composites 被引量:3
15
作者 宦春花 温变英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期1003-1007,共5页
A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styren... A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution. 展开更多
关键词 electrically conductive composite functionally gradient materials Stokes' law solution casting ABS Cu
下载PDF
In-situ fabrication of particulate reinforced aluminum matrix composites under high-frequency pulsed electromagnetic field 被引量:8
16
作者 Guirong Li Yutao Zhao Qixun Dai Hongjie Zhang Hongming Wang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第5期460-463,共4页
Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturba... Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. In. situ Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using AlZr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix. Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication. 展开更多
关键词 in-situ synthesis aluminum matrix composites pulsed magnetic field THERMODYNAMICS KINETICS
下载PDF
Characteristics of two Al based functionally gradient composites reinforced by primary Si particles and Si/in situ Mg_2Si particles in centrifugal casting 被引量:14
17
作者 翟彦博 刘昌明 +2 位作者 王开 邹茂华 谢勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第3期361-370,共10页
Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structura... Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube. 展开更多
关键词 centrifugal casting functionally gradient composites in situ primary Si particles in situ Mg2Si particles
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
18
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries composite solid electrolyte in-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
IN SITU GRADIENT DOUBLE-LAYER COMPOSITES OF Al-Fe ALLOY BY CENTRIFUGAL CASTING 被引量:1
19
作者 Wang, Qudong 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第1期126-131,共6页
INSITUGRADIENTDOUBLELAYERCOMPOSITESOFAlFeALLOYBYCENTRIFUGALCASTING①WangQudong,JinJunzeResearchCenterofFoun... INSITUGRADIENTDOUBLELAYERCOMPOSITESOFAlFeALLOYBYCENTRIFUGALCASTING①WangQudong,JinJunzeResearchCenterofFoundryEnginering,Dal... 展开更多
关键词 in SITU composites gradient composites double layer composites Al Fe ALLOY CENTRIFUGAL CASTING
下载PDF
Study of the axial density/impedance gradient composite long rod hypervelocity penetration into a four-layer Q345 target
20
作者 Na Feng Kun Ma +5 位作者 Chunlin Chen Lixin Yin Mingrui Li Zhihua Nie Gang Zhou Chengwen Tan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期314-329,共16页
Based on the dynamic shock response of the material and structure,the hypervelocity impact processes and mechanisms of long composite rods with axial density/impedance gradients penetration into fourlayer targets were... Based on the dynamic shock response of the material and structure,the hypervelocity impact processes and mechanisms of long composite rods with axial density/impedance gradients penetration into fourlayer targets were studied through experiments and numerical simulation methods.The propagation law of the shock waves,together with the structural responses of the projectiles and targets,the formation and evolution of the fragment groups formed during the processes and their distributions were described.The damage of each target plate was quantitatively analysed by comparing the results of the experiment and numerical simulation.The results showed that the axial density/impedance gradient projectiles could decrease the impact pressure to a certain extent,and the degree of damage to the target plate decreased layer by layer when the head density/impedance of the projectile was high.When the head density/impedance of the projectile was low,the degree of target damage first increased layer by layer until the projectile was completely eroded and then it decreased.The results can provide a reference for the design and application of long rods with axial composite structure for velocities ranging from 6 to 10 Ma or greater. 展开更多
关键词 HYPERVELOCITY Density/impedance gradient Axial composite rod Penetration mechanism
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部