As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in red...As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in reducing national energy demand. In-situ catalytic technology, characterized by its high efficiency, low pollution, and minimal energy consumption, represents a key direction for future oil shale development. This paper provides a comprehensive review of research progress in in-situ oil shale mining technology, oil shale pyrolysis catalysts, the pyrolysis mechanism of kerogen, and the compatibility of different heating processes and catalysts. Furthermore, the paper proposes future research directions and prospects for oil shale in-situ catalytic technology, including reservoir modification, highefficiency catalyst synthesis, injection processes, and high-efficiency heating technology. These insights serve as valuable technical references for the advancement of oil shale in-situ catalytic technology.展开更多
In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications su...In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends.展开更多
The properties of n-Ge epilayer deposited on Si substrate with in-situ doping technology in a cold-wall ultrahigh vacuum chemical vapor deposition(UHVCVD) system are investigated.The growth temperature of 500℃ is o...The properties of n-Ge epilayer deposited on Si substrate with in-situ doping technology in a cold-wall ultrahigh vacuum chemical vapor deposition(UHVCVD) system are investigated.The growth temperature of 500℃ is optimal for the n-Ge growth in our equipment with a phosphorus concentration of 1018cm-3.In the n-Ge epilayer,the depth profile of phosphorus concentration is box-shaped and the tensile strain of 0.12% confirmed by x-ray diffraction measurement is introduced which results in the red shift of the photoluminescence.The enhancements of photoluminescence intensity with the increase of the doping concentration are observed,which is consistent with the modeling of the spontaneous emission spectrum for direct transition of Ge.The results are of significance for guiding the growth of n-Ge epilayer with in-situ doping technology.展开更多
The breeding and large-scale application of hybrid rice contribute significantly to the food supply worldwide.Currently,hybrid seed production uses cytoplasmic male sterile(CMS)lines or photoperiod/thermo-sensitive ge...The breeding and large-scale application of hybrid rice contribute significantly to the food supply worldwide.Currently,hybrid seed production uses cytoplasmic male sterile(CMS)lines or photoperiod/thermo-sensitive genic male sterile(PTGMS)lines as female parent.Despite huge successes,both systems have intrinsic problems.CMS systems are mainly restricted by the narrow restorer resources that make it difficult to breed superior hybrids,while PTGMS systems are limited by conditional sterility of the male sterile lines that makes the propagation of both PTGMS seeds and hybrid seeds vulnerable to unpredictable climate changes.Recessive nuclear male sterile(NMS)lines insensitive to environmental conditions are widely distributed and are ideal for hybrid rice breeding and production,but the lack of effective ways to propagate the pure NMS lines in a large scale renders it impossible to use them for hybrid rice production.The development of"the third-generation hybrid rice technology"enables efficient propagation of the pure NMS lines in commercial scale.This paper discusses the establishment of"the thirdgeneration hybrid rice technology"and further innovations.This new technology breaks the limitations of CMS and PTGMS systems and will bring a big leap forward in hybrid rice production.展开更多
A novel technology of tuyere protection is introduced. The ceramic coat .is synthesized by using in-situ combustion process as the internal, external, and nose protecting coat of BF tuyeres. It can effectively protect...A novel technology of tuyere protection is introduced. The ceramic coat .is synthesized by using in-situ combustion process as the internal, external, and nose protecting coat of BF tuyeres. It can effectively protect the tuyeres and reduce heat loss by cooling water. The technglogy is quick-acting, easy to use, energy-saving and can make tuyeres have long service life. The feasibility of the application of the tuyere ceramic coat is discussed and the energy-saving effect of the tuyere is compared with that of the tuyeres lined with refractory.展开更多
The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the ...The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.展开更多
The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of h...The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration;although a new in-situ two-step sintering process can solve the above problems to some extent,yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process.In this paper,an in-situ one-step synthesis technology is proposed,which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace.A kind of Ti(C,N)-based ceramic cutting tool material synergistically toughened by TiB_2 particles and whiskers is fabricated with this new process.The phase compositions,relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction(XRD)and scanning electron microscopy(SEM).The composite which is sintered under a pressure of 32 MPa at a temperature of 1700℃in vacuum holding for 60 min can get the optimal mechanical properties.Its flexural strength,fracture toughness and Vickers hardness are 540 MPa,7.81 MPa·m(1/2)and 20.42 GPa,respectively.The composite has relatively high density,and the in-situ synthesized TiB_2 whiskers have good surface integrity,which is beneficial for the improvement of the fracture toughness.It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers,crack bridging by whiskers/particles and multi-scale particles synergistically toughening.This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials.展开更多
A safe and environmentally friendly cyaniding method has been developed to mitigate the toxic impacts of cyanide salts on the environment during conventional cyaniding. The method entails in-situ diffusion of nascent ...A safe and environmentally friendly cyaniding method has been developed to mitigate the toxic impacts of cyanide salts on the environment during conventional cyaniding. The method entails in-situ diffusion of nascent cyanide from mature cassava leaves into the surface of mild steel components via pack-cyaniding. Both high-temperature in-situ diffusion into austenite and low-temperature in-situ diffusion into ferrite were explored. Results from light and scanning electron microscopic studies showed that surface hardness of the steel components was substantially increased. The waste product was a harmless biodegradable organic compound that posed no disposal threats. This study is important for increasing the wear resistance of ferrous parts for a longer service life in application without polluting the environment.展开更多
目的:对肠道病毒71型灭活疫苗生产工艺中氢氧化铝佐剂的制备工艺进行优化。方法:采用氨水法制备氢氧化铝佐剂,取优化前3批及优化后3批,对制备过程中氨水的滴加方式以及透析方式进行优化;检测优化前后的氢氧化铝佐剂的粒径、沉降率、铵...目的:对肠道病毒71型灭活疫苗生产工艺中氢氧化铝佐剂的制备工艺进行优化。方法:采用氨水法制备氢氧化铝佐剂,取优化前3批及优化后3批,对制备过程中氨水的滴加方式以及透析方式进行优化;检测优化前后的氢氧化铝佐剂的粒径、沉降率、铵离子及铝含量,同时检测优化前后各3批氢氧化铝对肠道病毒71型灭活疫苗的吸附效果。结果:优化后的氢氧化铝佐剂平均粒径显著小于优化前(P<0.05),且平均粒径变异系数小于优化前3批,优化后3批氢氧化铝佐剂的沉降率均为0 m L,铵离子检测合格率100%,铝含量及氢氧化铝含量显著大于优化前(P<0.05)、分别提高了24.7%和26.1%;优化前后6批氢氧化铝佐剂所配制的半成品,其上清液抗原百分含量均≤1.25%,优化前后的氢氧化铝佐剂对EV71抗原的吸附效果比较,差异无统计学意义(P>0.05)。结论:本部分的优化方式提高了自配氢氧化铝佐剂的质量和安全性,减少了批间差异,提高了生产效率,并且其有效性没有因为优化而受到影响。展开更多
基金financially supported by the National Natural Science Foundation of China(52174047)Sinopec Project(P21063-3)。
文摘As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in reducing national energy demand. In-situ catalytic technology, characterized by its high efficiency, low pollution, and minimal energy consumption, represents a key direction for future oil shale development. This paper provides a comprehensive review of research progress in in-situ oil shale mining technology, oil shale pyrolysis catalysts, the pyrolysis mechanism of kerogen, and the compatibility of different heating processes and catalysts. Furthermore, the paper proposes future research directions and prospects for oil shale in-situ catalytic technology, including reservoir modification, highefficiency catalyst synthesis, injection processes, and high-efficiency heating technology. These insights serve as valuable technical references for the advancement of oil shale in-situ catalytic technology.
基金The National Key Research and Development Program of China under contract No.2022YFC3104200the Key R&D Program of Shandong Province,China under contract No.2023ZLYS01+3 种基金the Consulting and Research Project of the Chinese Academy of Engineering under contract Nos 2022-XY-21,2022-DFZD-35,2023-XBZD-09 and 2021-XBZD-13the Major Innovation Special Project of Qilu University of Technology(Shandong Academy of Sciences),Science Education Industry Integration Pilot Project under contract No.2023HYZX01Special Funds for“Mount Taishan Scholars”Construction Projectthe Special Funds of Laoshan Laboratory.
文摘In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632103)the National Key Technology Support Program of China(Grant No.2015BAF24B01)+4 种基金the Natural Science Foundation of Fujian Province of China(Grant No.2016J05147)the Key Sci-Tech Research and Development Platform of Fujian Province,China(Grant No.2014H2002)the Provincial University Foundation of Fujian Province,China(Grant No.JK2013030)the Educational Youth Key Foundation of Fujian Province,China(Grant No.JA13210)the Scientific Research Fund of Fujian University of Technology,China(Grant No.GY-Z14073)
文摘The properties of n-Ge epilayer deposited on Si substrate with in-situ doping technology in a cold-wall ultrahigh vacuum chemical vapor deposition(UHVCVD) system are investigated.The growth temperature of 500℃ is optimal for the n-Ge growth in our equipment with a phosphorus concentration of 1018cm-3.In the n-Ge epilayer,the depth profile of phosphorus concentration is box-shaped and the tensile strain of 0.12% confirmed by x-ray diffraction measurement is introduced which results in the red shift of the photoluminescence.The enhancements of photoluminescence intensity with the increase of the doping concentration are observed,which is consistent with the modeling of the spontaneous emission spectrum for direct transition of Ge.The results are of significance for guiding the growth of n-Ge epilayer with in-situ doping technology.
基金supported by the National Natural Science Foundation of China(U1901203)Natural Science Foundation of Guangdong Province(2018B030308008 and 2019A1515110671)+2 种基金Major Program of Guangdong Basic and Applied Research(2019B030302006)Shenzhen Commission on Innovation and Technology Programs(JCYJ20180507181837997)China Postdoctoral Science Foundation(2019M662957)。
文摘The breeding and large-scale application of hybrid rice contribute significantly to the food supply worldwide.Currently,hybrid seed production uses cytoplasmic male sterile(CMS)lines or photoperiod/thermo-sensitive genic male sterile(PTGMS)lines as female parent.Despite huge successes,both systems have intrinsic problems.CMS systems are mainly restricted by the narrow restorer resources that make it difficult to breed superior hybrids,while PTGMS systems are limited by conditional sterility of the male sterile lines that makes the propagation of both PTGMS seeds and hybrid seeds vulnerable to unpredictable climate changes.Recessive nuclear male sterile(NMS)lines insensitive to environmental conditions are widely distributed and are ideal for hybrid rice breeding and production,but the lack of effective ways to propagate the pure NMS lines in a large scale renders it impossible to use them for hybrid rice production.The development of"the third-generation hybrid rice technology"enables efficient propagation of the pure NMS lines in commercial scale.This paper discusses the establishment of"the thirdgeneration hybrid rice technology"and further innovations.This new technology breaks the limitations of CMS and PTGMS systems and will bring a big leap forward in hybrid rice production.
基金Item Sponsored by National Natural Science Foundation of China (50572005 ,50172006)
文摘A novel technology of tuyere protection is introduced. The ceramic coat .is synthesized by using in-situ combustion process as the internal, external, and nose protecting coat of BF tuyeres. It can effectively protect the tuyeres and reduce heat loss by cooling water. The technglogy is quick-acting, easy to use, energy-saving and can make tuyeres have long service life. The feasibility of the application of the tuyere ceramic coat is discussed and the energy-saving effect of the tuyere is compared with that of the tuyeres lined with refractory.
文摘The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)Key Special Project of Numerical Control Machine Tool of China(Grant No.2012ZX04003-051)China Postdoctoral Science Special Foundation(Grant No.2012T50610)
文摘The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration;although a new in-situ two-step sintering process can solve the above problems to some extent,yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process.In this paper,an in-situ one-step synthesis technology is proposed,which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace.A kind of Ti(C,N)-based ceramic cutting tool material synergistically toughened by TiB_2 particles and whiskers is fabricated with this new process.The phase compositions,relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction(XRD)and scanning electron microscopy(SEM).The composite which is sintered under a pressure of 32 MPa at a temperature of 1700℃in vacuum holding for 60 min can get the optimal mechanical properties.Its flexural strength,fracture toughness and Vickers hardness are 540 MPa,7.81 MPa·m(1/2)and 20.42 GPa,respectively.The composite has relatively high density,and the in-situ synthesized TiB_2 whiskers have good surface integrity,which is beneficial for the improvement of the fracture toughness.It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers,crack bridging by whiskers/particles and multi-scale particles synergistically toughening.This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials.
文摘A safe and environmentally friendly cyaniding method has been developed to mitigate the toxic impacts of cyanide salts on the environment during conventional cyaniding. The method entails in-situ diffusion of nascent cyanide from mature cassava leaves into the surface of mild steel components via pack-cyaniding. Both high-temperature in-situ diffusion into austenite and low-temperature in-situ diffusion into ferrite were explored. Results from light and scanning electron microscopic studies showed that surface hardness of the steel components was substantially increased. The waste product was a harmless biodegradable organic compound that posed no disposal threats. This study is important for increasing the wear resistance of ferrous parts for a longer service life in application without polluting the environment.
文摘目的:对肠道病毒71型灭活疫苗生产工艺中氢氧化铝佐剂的制备工艺进行优化。方法:采用氨水法制备氢氧化铝佐剂,取优化前3批及优化后3批,对制备过程中氨水的滴加方式以及透析方式进行优化;检测优化前后的氢氧化铝佐剂的粒径、沉降率、铵离子及铝含量,同时检测优化前后各3批氢氧化铝对肠道病毒71型灭活疫苗的吸附效果。结果:优化后的氢氧化铝佐剂平均粒径显著小于优化前(P<0.05),且平均粒径变异系数小于优化前3批,优化后3批氢氧化铝佐剂的沉降率均为0 m L,铵离子检测合格率100%,铝含量及氢氧化铝含量显著大于优化前(P<0.05)、分别提高了24.7%和26.1%;优化前后6批氢氧化铝佐剂所配制的半成品,其上清液抗原百分含量均≤1.25%,优化前后的氢氧化铝佐剂对EV71抗原的吸附效果比较,差异无统计学意义(P>0.05)。结论:本部分的优化方式提高了自配氢氧化铝佐剂的质量和安全性,减少了批间差异,提高了生产效率,并且其有效性没有因为优化而受到影响。