Infrared target detection models are more required than ever before to be deployed on embedded platforms,which requires models with less memory consumption and better real-time performance while considering accuracy.T...Infrared target detection models are more required than ever before to be deployed on embedded platforms,which requires models with less memory consumption and better real-time performance while considering accuracy.To address the above challenges,we propose a modified You Only Look Once(YOLO)algorithm PF-YOLOv4-Tiny.The algorithm incorpo-rates spatial pyramidal pooling(SPP)and squeeze-and-excitation(SE)visual attention modules to enhance the target localization capability.The PANet-based-feature pyramid networks(P-FPN)are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy.To lighten the network,the standard convolutions other than the backbone network are replaced with depthwise separable convolutions.In post-processing the images,the soft-non-maximum suppression(soft-NMS)algorithm is employed to subside the missed and false detection problems caused by the occlusion between targets.The accuracy of our model can finally reach 61.75%,while the total Params is only 9.3 M and GFLOPs is 11.At the same time,the inference speed reaches 87 FPS on NVIDIA GeForce GTX 1650 Ti,which can meet the requirements of the infrared target detection algorithm for the embedded deployments.展开更多
Infrared(IR)absorption spectroscopy has been widely used for dynamic characterization of catalysts and mechanism of catalytic reactions.However,due to the strong infrared absorption of heterogeneous catalysts(mainly o...Infrared(IR)absorption spectroscopy has been widely used for dynamic characterization of catalysts and mechanism of catalytic reactions.However,due to the strong infrared absorption of heterogeneous catalysts(mainly oxides,or supported metal and metal oxides,etc.)below 1200 cm^(-1),and the intensity of regular infrared light source rapidly decays at low-wavenumber range,most in-situ infrared spectroscopy studies are limited to the detection of surface adsorbates in the range of 4000-900 cm^(-1).The change of catalytically active component itself(M-O,M-M bond,etc.,1200-50 cm^(-1))during the reaction is hard to be tracked under reaction conditions by in-situ IR.In this work,a home-made in-situ IR reactor was designed and a sample preparing method was developed.With such progresses,the changes of reactants,products,surface adsorbates,and catalysts themselves can be measured under the same reaction conditions with a spectral range of 4000-400 cm^(-1),providing a new opportunity for in-situ characterization of heterogeneous catalysis.CO oxidation on Pd/SiO_(2) and Cu/SiO_(2) catalysts were taken as examples,since both the two catalytic systems were extensively used commercially,and moreover reduction and oxidation of palladium and copper occur during the examined reaction conditions.The characteristic bands of Pd^(2+)-O(670,608 cm^(-1)),Cu^(+)-O(635 cm^(-1))and Cu^(2+)-O(595,535 cm^(-1))were observed by IR,and the changes during CO oxidation reaction were successfully monitored by IR.The oxidation/reduction of palladium and copper were also confirmed by ex-situ XPS.Moreover,Pd^(0) in Pd/SiO_(2) and Cu^(+)in Cu/SiO_(2) were found as the thermal dynamically stable phases under the examined conditions for CO oxidation.展开更多
Two measuring methods, high-speed camera and optical monitoring system, were used to study processes of laser welding. Molten pool, cooling time and temperature field were analyzed based on real measured images and op...Two measuring methods, high-speed camera and optical monitoring system, were used to study processes of laser welding. Molten pool, cooling time and temperature field were analyzed based on real measured images and optical signal data. The results show that the width of molten pool is almost equal to the width of weld, and length is about 7. 8 mm. The solidification time is about 0. 5 s and the temperature gradient is great, so HAZ is very small. The method and results will be of benefit to build the relationship between welding parameters and microstructure.展开更多
The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement f...The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.展开更多
The dynamic behaviors of the keyhole and weld pool are coupled together in plasma arc welding, and the geometric variations of both the keyhole and the weld pool determine the weld quality. It is of great significance...The dynamic behaviors of the keyhole and weld pool are coupled together in plasma arc welding, and the geometric variations of both the keyhole and the weld pool determine the weld quality. It is of great significance to simultaneously sense and monitor the keyhole and the weld pool behaviors by using a single low-cost vision sensor in plasma arc welding process. In this study, the keyhole and weld pool were observed and measured under different levels of welding current by using the near infrared sensing technology and the charge coupled device (CCD) sensing system. The shapes and relative position of weld pool and keyhole under different conditions were compared and analyzed. The observation results lay solid foundation for controlling weld quality and understanding the underlying process mechanisms.展开更多
A comprehensive understanding of the microscopic reaction mechanisms at the gas-solid-liquid electrochemical interfaces is urgently required for the development of advanced electrocatalysts applied in burgeoning susta...A comprehensive understanding of the microscopic reaction mechanisms at the gas-solid-liquid electrochemical interfaces is urgently required for the development of advanced electrocatalysts applied in burgeoning sustainable energy conversion systems. In-situ synchrotron radiation Fourier transform infrared(SR-FTIR) spectroscopy is one of the most powerful techniques for investigating the evolving dynamics of reactive intermediates during electrocatalytic reactions. In this review, we methodically summarize the recent progress in the research of dynamic mechanisms for valuable electrocatalytic reactions based on in-situ SR-FTIR methodology. Moreover, the merits and drawbacks of SRFTIR spectroscopy, the design principles of infrared beam setups and in-situ cells, as well as the in-situ measurement criteria are also discussed in detail. Lastly, the potential challenges and opportunities in this field are prudently stated. This review is expected to stimulate a broad interest in the material science and electrochemistry communities for exploring the dynamic mechanisms of prominent catalysis at the atomic/molecular level by using SR-based spectroscopy.展开更多
基金supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grants No.19JKB520031).
文摘Infrared target detection models are more required than ever before to be deployed on embedded platforms,which requires models with less memory consumption and better real-time performance while considering accuracy.To address the above challenges,we propose a modified You Only Look Once(YOLO)algorithm PF-YOLOv4-Tiny.The algorithm incorpo-rates spatial pyramidal pooling(SPP)and squeeze-and-excitation(SE)visual attention modules to enhance the target localization capability.The PANet-based-feature pyramid networks(P-FPN)are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy.To lighten the network,the standard convolutions other than the backbone network are replaced with depthwise separable convolutions.In post-processing the images,the soft-non-maximum suppression(soft-NMS)algorithm is employed to subside the missed and false detection problems caused by the occlusion between targets.The accuracy of our model can finally reach 61.75%,while the total Params is only 9.3 M and GFLOPs is 11.At the same time,the inference speed reaches 87 FPS on NVIDIA GeForce GTX 1650 Ti,which can meet the requirements of the infrared target detection algorithm for the embedded deployments.
文摘Infrared(IR)absorption spectroscopy has been widely used for dynamic characterization of catalysts and mechanism of catalytic reactions.However,due to the strong infrared absorption of heterogeneous catalysts(mainly oxides,or supported metal and metal oxides,etc.)below 1200 cm^(-1),and the intensity of regular infrared light source rapidly decays at low-wavenumber range,most in-situ infrared spectroscopy studies are limited to the detection of surface adsorbates in the range of 4000-900 cm^(-1).The change of catalytically active component itself(M-O,M-M bond,etc.,1200-50 cm^(-1))during the reaction is hard to be tracked under reaction conditions by in-situ IR.In this work,a home-made in-situ IR reactor was designed and a sample preparing method was developed.With such progresses,the changes of reactants,products,surface adsorbates,and catalysts themselves can be measured under the same reaction conditions with a spectral range of 4000-400 cm^(-1),providing a new opportunity for in-situ characterization of heterogeneous catalysis.CO oxidation on Pd/SiO_(2) and Cu/SiO_(2) catalysts were taken as examples,since both the two catalytic systems were extensively used commercially,and moreover reduction and oxidation of palladium and copper occur during the examined reaction conditions.The characteristic bands of Pd^(2+)-O(670,608 cm^(-1)),Cu^(+)-O(635 cm^(-1))and Cu^(2+)-O(595,535 cm^(-1))were observed by IR,and the changes during CO oxidation reaction were successfully monitored by IR.The oxidation/reduction of palladium and copper were also confirmed by ex-situ XPS.Moreover,Pd^(0) in Pd/SiO_(2) and Cu^(+)in Cu/SiO_(2) were found as the thermal dynamically stable phases under the examined conditions for CO oxidation.
文摘Two measuring methods, high-speed camera and optical monitoring system, were used to study processes of laser welding. Molten pool, cooling time and temperature field were analyzed based on real measured images and optical signal data. The results show that the width of molten pool is almost equal to the width of weld, and length is about 7. 8 mm. The solidification time is about 0. 5 s and the temperature gradient is great, so HAZ is very small. The method and results will be of benefit to build the relationship between welding parameters and microstructure.
基金Supported by the National Nature Science Foundation of China(No.41527901)the Provincial Key Research and Development Program of Shandong,China(No.2019JZZY010417)the Special Program of Shandong Province for Qingdao Pilot National Laboratory of Marine Science and Technology(No.2021QNLM020002).
文摘The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.
文摘The dynamic behaviors of the keyhole and weld pool are coupled together in plasma arc welding, and the geometric variations of both the keyhole and the weld pool determine the weld quality. It is of great significance to simultaneously sense and monitor the keyhole and the weld pool behaviors by using a single low-cost vision sensor in plasma arc welding process. In this study, the keyhole and weld pool were observed and measured under different levels of welding current by using the near infrared sensing technology and the charge coupled device (CCD) sensing system. The shapes and relative position of weld pool and keyhole under different conditions were compared and analyzed. The observation results lay solid foundation for controlling weld quality and understanding the underlying process mechanisms.
基金supported by the National Natural Science Foundation of China (Nos. 1932212, U1932109, 11875257)。
文摘A comprehensive understanding of the microscopic reaction mechanisms at the gas-solid-liquid electrochemical interfaces is urgently required for the development of advanced electrocatalysts applied in burgeoning sustainable energy conversion systems. In-situ synchrotron radiation Fourier transform infrared(SR-FTIR) spectroscopy is one of the most powerful techniques for investigating the evolving dynamics of reactive intermediates during electrocatalytic reactions. In this review, we methodically summarize the recent progress in the research of dynamic mechanisms for valuable electrocatalytic reactions based on in-situ SR-FTIR methodology. Moreover, the merits and drawbacks of SRFTIR spectroscopy, the design principles of infrared beam setups and in-situ cells, as well as the in-situ measurement criteria are also discussed in detail. Lastly, the potential challenges and opportunities in this field are prudently stated. This review is expected to stimulate a broad interest in the material science and electrochemistry communities for exploring the dynamic mechanisms of prominent catalysis at the atomic/molecular level by using SR-based spectroscopy.