CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemi...CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.展开更多
The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting...The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting the porosity of the ore-bearing aquifer. CaCO3 deposits can also block pumping and injection holes if the formulation parameters of the leaching solution are not well controlled. However, controlling these parameters to operate the in-situ leaching process is challenging. Our study demonstrates that the dissolved uranium concentration in the leaching solution increases as HCO3-concentration increases. Therefore, the most suitable HCO3-concentration to use as leaching solution is defined by the boundary value of the HCO3-concentration that controls CaCO3 dissolution-precipitation. That is, the dissolution and precipitation of calcite is closely related to pH, Ca2+ and HCO3-concentration. The pH and Ca2+ concentration are the main factors limiting HCO3-concentration in the leaching solution. The higher the pH and Ca2+ concentration, the lower the boundary value of HCO3-concentration, and therefore the more unfavorable to in-situ leaching of uranium.展开更多
This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitroge...This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.展开更多
Electrochemical nitrate reduction reaction (NITRR) is regarded as a “two birds-one stone” method for the treatment of nitrate contaminant in polluted water and the synthesis of valuable ammonia, which is retarded by...Electrochemical nitrate reduction reaction (NITRR) is regarded as a “two birds-one stone” method for the treatment of nitrate contaminant in polluted water and the synthesis of valuable ammonia, which is retarded by the lack of highly reactive and selective electrocatalysts .Herein, for the first time, nickel foam supported Co_(4) N was designed as a high-performance NITRR catalyst by an in-situ nonmetal leaching-induced strategy.At the optimal potential, the Co_(4) N/NF catalyst achieves ultra-high Faraday efficiency and NH_(3) selectivity of 95.4% and 99.4%, respectively.Ex situ X-ray absorption spectroscopy (XAS), together with other experiments powerfully reveal that the nitrogen vacancies produced by nitrogen leaching are stable and play a key role in boosting nitrate reduction to ammonia.Theoretical calculations confirm that Co_(4) N with abundant nitrogen vacancies can optimize the adsorption energies of NO_(3)^(-) and intermediates, lower the free energy (Δ G ) of the potential-determining step (*NH_(3) to NH_(3) ) and inhibit the formation of N-containing byproducts.In addition, we also conclude that the nitrogen vacancies can stabilize the adsorbed hydrogen, making H_(2) quite difficult to produce, and lowering ΔG from *NO to *NOH, which facilitates the selective reduction of nitrate.This study reveals significant insights about the in-situ nonmetal leaching to enhance the NITRR activity.展开更多
Borehole breakout is a widely utilised phenomenon in horizontal stress orientation determination,and breakout geometrical parameters,such as width and depth,have been used to estimate both horizontal stress magnitudes...Borehole breakout is a widely utilised phenomenon in horizontal stress orientation determination,and breakout geometrical parameters,such as width and depth,have been used to estimate both horizontal stress magnitudes.However,the accuracy of minimum horizontal stress estimation from borehole breakout remains relatively low in comparison to maximum horizontal stress estimation.This paper aims to compare and improve the minimum horizontal stress estimation via a number of machine learning(ML)regression techniques,including parametric and non-parametric models,which have rarely been explored.ML models were trained based on 79 laboratory data from published literature and validated against 23 field data.A systematic bias was observed in the prediction for the validation dataset whenever the horizontal stress value exceeded the maximum value in the training data.Nevertheless,the pattern was captured,and the removal of systematic bias showed that the artificial neural network is capable of predicting the minimum horizontal stress with an average error rate of 10.16%and a root mean square error of 3.87 MPa when compared to actual values obtained through conventional in-situ measurement techniques.This is a meaningful improvement considering the importance of in-situ stress knowledge for underground operations and the availability of borehole breakout data.展开更多
Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test ...Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.展开更多
The fractionation of ion adsorption rare earths(IAREs) along the depth in a shaft of a deposit at Dajishan,Jiangxi, China was comparatively evaluated using the partition values(PVs) and relative fractionation values(R...The fractionation of ion adsorption rare earths(IAREs) along the depth in a shaft of a deposit at Dajishan,Jiangxi, China was comparatively evaluated using the partition values(PVs) and relative fractionation values(RFVs) of the leached rare earths(REs). It is found that both PVs and RFVs can objectively reflect the migration and fractionation of REs, but RE content and abrasion pH could not. However, the RFVs can provide more information to quantitatively evaluating the migration and fractionation characteristics of REs along the selected direction and region than PVs could, which is of significance for designing the optimal procedures of in-situ leaching based on the determined flow direction of injecting solution. It is demonstrated that the migration of Ce, Pr, and Nd along the depth direction is inert, and that of REs post Sm and Y is active. Meanwhile, the migration of La shows region characteristics which is active in the upper and inert in lower region. More interesting, the dependence of RFVs on atomic number of REs displays a tetrad group variation trend. However, the fractionation of REs among clay minerals with different particle sizes is not evident, especially for the clay in the bottom region. These results indicate that the migration and fractionation of REs not only are dominated by the adsorption of their hydrated ions, but also rely on their hydrolysis tendency, which provide information for understanding the metallogenic mechanism of IAREs.展开更多
Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) throu...Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) through a mild sulfuration and/or selenylation process of Ni(OH)_(2) supported on carbon cloth(CC).Through careful in-situ Raman spectroscopy and ex-situ X-ray photoelectron spectroscopy,surface reconstruction of NiS_(2),NiSe_(2),and Se-NiS_(2) during the OER process has been revealed.A potentialdependent study shows that Se-NiS_(2) undergoes surface evolution at lower potentials and requires the lowest potential for conversion to NiOOH as a highly OER-active species,accompanied by the leaching of SO_(4)^(2-) and SeO_(4)^(2-) that can again be adsorbed on the catalyst surface to enhance the catalytic activity.Density functional theory(DFT) calculations confirm that Se-NiS_(2) is more susceptible to surface oxidation through the OER process.Therefore,Se-NiS_(2) exhibits outstanding OER activity and stability in alkaline conditions,requiring an overpotential of 343 mV at a current density of 50 mA cm^(-2).A novel insight is provided by our work in understanding the surface reconstruction and electrocatalytic mechanism of Ni-based chalcogenides.展开更多
基金jointly supported by the National Key Research and Development Program of China(No.2019YFC1804304)the National Natural Science Foundation of China(Nos.2167212,41772254)。
文摘CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.
基金supported by the basic science research project (A3420060142) from China National Defence Science and Technology Industry BureauChina National Natural Science Fund Project (40872165)
文摘The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting the porosity of the ore-bearing aquifer. CaCO3 deposits can also block pumping and injection holes if the formulation parameters of the leaching solution are not well controlled. However, controlling these parameters to operate the in-situ leaching process is challenging. Our study demonstrates that the dissolved uranium concentration in the leaching solution increases as HCO3-concentration increases. Therefore, the most suitable HCO3-concentration to use as leaching solution is defined by the boundary value of the HCO3-concentration that controls CaCO3 dissolution-precipitation. That is, the dissolution and precipitation of calcite is closely related to pH, Ca2+ and HCO3-concentration. The pH and Ca2+ concentration are the main factors limiting HCO3-concentration in the leaching solution. The higher the pH and Ca2+ concentration, the lower the boundary value of HCO3-concentration, and therefore the more unfavorable to in-situ leaching of uranium.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,5136-4015)Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)National High-Tech Research and Development Program of China(Grant No.2012BAC11B07)~~
文摘This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.
基金financial supports from National Natural Science Foundation of China(Nos.91741105,22006120)Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.CXTDX201601011)Chongqing Municipal Natural Science Foundation(No.cstc2018jcyjAX0625).
文摘Electrochemical nitrate reduction reaction (NITRR) is regarded as a “two birds-one stone” method for the treatment of nitrate contaminant in polluted water and the synthesis of valuable ammonia, which is retarded by the lack of highly reactive and selective electrocatalysts .Herein, for the first time, nickel foam supported Co_(4) N was designed as a high-performance NITRR catalyst by an in-situ nonmetal leaching-induced strategy.At the optimal potential, the Co_(4) N/NF catalyst achieves ultra-high Faraday efficiency and NH_(3) selectivity of 95.4% and 99.4%, respectively.Ex situ X-ray absorption spectroscopy (XAS), together with other experiments powerfully reveal that the nitrogen vacancies produced by nitrogen leaching are stable and play a key role in boosting nitrate reduction to ammonia.Theoretical calculations confirm that Co_(4) N with abundant nitrogen vacancies can optimize the adsorption energies of NO_(3)^(-) and intermediates, lower the free energy (Δ G ) of the potential-determining step (*NH_(3) to NH_(3) ) and inhibit the formation of N-containing byproducts.In addition, we also conclude that the nitrogen vacancies can stabilize the adsorbed hydrogen, making H_(2) quite difficult to produce, and lowering ΔG from *NO to *NOH, which facilitates the selective reduction of nitrate.This study reveals significant insights about the in-situ nonmetal leaching to enhance the NITRR activity.
基金The work reported here is funded by Australian Coal Industry’s Research Program(ACARP)(No.C26063).
文摘Borehole breakout is a widely utilised phenomenon in horizontal stress orientation determination,and breakout geometrical parameters,such as width and depth,have been used to estimate both horizontal stress magnitudes.However,the accuracy of minimum horizontal stress estimation from borehole breakout remains relatively low in comparison to maximum horizontal stress estimation.This paper aims to compare and improve the minimum horizontal stress estimation via a number of machine learning(ML)regression techniques,including parametric and non-parametric models,which have rarely been explored.ML models were trained based on 79 laboratory data from published literature and validated against 23 field data.A systematic bias was observed in the prediction for the validation dataset whenever the horizontal stress value exceeded the maximum value in the training data.Nevertheless,the pattern was captured,and the removal of systematic bias showed that the artificial neural network is capable of predicting the minimum horizontal stress with an average error rate of 10.16%and a root mean square error of 3.87 MPa when compared to actual values obtained through conventional in-situ measurement techniques.This is a meaningful improvement considering the importance of in-situ stress knowledge for underground operations and the availability of borehole breakout data.
文摘Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.
基金Project supported by National Natural Science Foundation of China(21161014,51274123)National Program on Key Basic Research Project of China(973 Program,2012VBA01204)
文摘The fractionation of ion adsorption rare earths(IAREs) along the depth in a shaft of a deposit at Dajishan,Jiangxi, China was comparatively evaluated using the partition values(PVs) and relative fractionation values(RFVs) of the leached rare earths(REs). It is found that both PVs and RFVs can objectively reflect the migration and fractionation of REs, but RE content and abrasion pH could not. However, the RFVs can provide more information to quantitatively evaluating the migration and fractionation characteristics of REs along the selected direction and region than PVs could, which is of significance for designing the optimal procedures of in-situ leaching based on the determined flow direction of injecting solution. It is demonstrated that the migration of Ce, Pr, and Nd along the depth direction is inert, and that of REs post Sm and Y is active. Meanwhile, the migration of La shows region characteristics which is active in the upper and inert in lower region. More interesting, the dependence of RFVs on atomic number of REs displays a tetrad group variation trend. However, the fractionation of REs among clay minerals with different particle sizes is not evident, especially for the clay in the bottom region. These results indicate that the migration and fractionation of REs not only are dominated by the adsorption of their hydrated ions, but also rely on their hydrolysis tendency, which provide information for understanding the metallogenic mechanism of IAREs.
基金supported by the financial support from the National Natural Science Foundation of China (21871065, 22071038, 22209129)the Heilongjiang Touyan Team (HITTY20190033)the Interdisciplinary Research Foundation of HIT (IR2021205)。
文摘Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) through a mild sulfuration and/or selenylation process of Ni(OH)_(2) supported on carbon cloth(CC).Through careful in-situ Raman spectroscopy and ex-situ X-ray photoelectron spectroscopy,surface reconstruction of NiS_(2),NiSe_(2),and Se-NiS_(2) during the OER process has been revealed.A potentialdependent study shows that Se-NiS_(2) undergoes surface evolution at lower potentials and requires the lowest potential for conversion to NiOOH as a highly OER-active species,accompanied by the leaching of SO_(4)^(2-) and SeO_(4)^(2-) that can again be adsorbed on the catalyst surface to enhance the catalytic activity.Density functional theory(DFT) calculations confirm that Se-NiS_(2) is more susceptible to surface oxidation through the OER process.Therefore,Se-NiS_(2) exhibits outstanding OER activity and stability in alkaline conditions,requiring an overpotential of 343 mV at a current density of 50 mA cm^(-2).A novel insight is provided by our work in understanding the surface reconstruction and electrocatalytic mechanism of Ni-based chalcogenides.