Increasingly serious leak problem in pipeline transportation has not only affected the operation of pipelines but also caused loss of precious resource and environmental damage. Based on the analysis of the occurrence...Increasingly serious leak problem in pipeline transportation has not only affected the operation of pipelines but also caused loss of precious resource and environmental damage. Based on the analysis of the occurrence of negative pressure waves and the unsupervised learning of pattern recognition, the Interactive Self-organizing Data Analysis Technique Algorithm (ISODATA) method was used to classify the negative pressure waves and then the states of pipelines could be determined. K L transformation was used to eliminate the correlativity of feature parameters and to reduce the dimensionality of feature vector space to speed up calculation. Experimental results validated the accuracy and practical value of this method.展开更多
The leakage control is an important task, because it is associated with some problems such as economic loss, safety concerns, and environmental damages. The pervious methods which have already been devised for leakage...The leakage control is an important task, because it is associated with some problems such as economic loss, safety concerns, and environmental damages. The pervious methods which have already been devised for leakage detection are not only expensive and time consuming, but also have a low efficient. As a result, the global leakage detection methods such as leak detection based on simulation and calibration of the network have been considered recently. In this research, leak detection based on calibration in two hypothetical and a laboratorial networks is considered. Additionally a novel optimization method called step-by-step elimination method (SSEM) combining with a genetic algorithm (GA) is introduced to calibration and leakage detection in networks. This method step-by-step detects and eliminates the nodes that provide no contribution in leakage among uncertain parameters of calibration of a network. The proposed method initiates with an ordinary calibration for a studied network, follow by elimination of suspicious nodes among adjusted parameters, then, the network is re-calibrated. Finally the process is repeated until the numbers of unknown demands are equal to the desired numbers or the exact leakage locations and values are determined. These investigations illustrate the capability of this method for detecting the locations and sizes of leakages.展开更多
A quantitative risk assessment (QRA) based on leak detection criteria (LDC) for the design of a proposed subsea oil export pipeline is presented in this paper. The objective of this QRA/LDC study was to determine ...A quantitative risk assessment (QRA) based on leak detection criteria (LDC) for the design of a proposed subsea oil export pipeline is presented in this paper. The objective of this QRA/LDC study was to determine if current leak detection methodologies were sufficient, based on QRA results, while excluding the use of statistical leak detection; if not, an appropriate LDC for the leak detection system would need to be established. The famous UK PARLOC database was used for the calculation of pipeline failure rates, and the software POSVCM from MMS was used for oil spill simulations. QRA results revealed that the installation of a statistically based leak detection system (LDS) can significantly reduce time to leak detection, thereby mitigating the consequences of leakage. A sound LDC has been defined based on QRA study results and comments from various LDS vendors to assist the emergency response team (ERT) to quickly identify and locate leakage and employ the most effective measures to contain damage.展开更多
Laser-induced breakdown spectroscopy(LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was inv...Laser-induced breakdown spectroscopy(LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was investigated by using a compact LIBS-sea system developed by Ocean University of China for the in-situ chemical analysis of seawater. The results from the field measurements show that the liquid pressure has a significant effect on the LIBS signals. Higher peak intensity and larger line broadening were obtained as the pressure increases. By comparing the variations of the temperature and salinity with the LIBS signals, a weak correlation between them can be observed. Under high pressure conditions, the optimal laser energy was higher than that in air environment. When the laser energy exceeded 17 mJ, the effect of laser energy on the signal intensity weakened. The signal intensity decreases gradually at larger delays. The obtained results verified the feasibility of the LIBS technique for the deep-sea in-situ detection, and we hope this technology can contribute to surveying more deep-sea environments such as the hydrothermal vent regions.展开更多
This paper examines the advances in pipeline third party encroachment alert systems and leak control methods in the oil/gas industry. It also highlights the extent of spill/pollution issues in the Niger Delta region d...This paper examines the advances in pipeline third party encroachment alert systems and leak control methods in the oil/gas industry. It also highlights the extent of spill/pollution issues in the Niger Delta region due to intended/unin- tended damages and suggests a possible method of control. It is believed that the best option to avoid pollution due to pipeline failure is to ensure that hydrocarbon does not exit from the pipeline. With the different methods considered in this review, acoustic monitoring of change in the operational sound generated from a given pipeline section is suggested to be practicable to identifying sound abnormalities of third party encroachments. One established challenge of the acoustic system for buried pipelines protection is attenuation of acoustic transmission. An attempt to check the performance of an acoustic transmission on steel pipelines submerged in water points to a similar research on plastic water pipelines that attenuation is small compared with pipe buried in soil. Fortunately, Niger Delta of Nigeria is made of wetland, swamps and shallow water and could therefore offer an opportunity to deploy acoustic system for the safety of pipelines against third party attacks in this region. However, the numerous configuration and quantity of oil installation in this region imply that cost of application will be enormous. It is therefore suggested that a combination of impressed alternating cycle current (IACC) which traces encroachment on the pipeline coating and an acoustic system be used to manage intended and unintended pipeline potential damages. The IACC should be used for flow lines and other short distance delivery lines within the oilfield, while the relatively large diameter and long length delivery, trunk and transmission lines should be considered for acoustic protection. It is, however, noted that further efforts are required to reduce cost and improve effectiveness of these systems.展开更多
Leakage from pipelines has caused serious environmental pollution and economic losses. Usually, leak detection can reduce the damage. The paper mainly discusses a hydraulic gradient-based leak detection method. The ba...Leakage from pipelines has caused serious environmental pollution and economic losses. Usually, leak detection can reduce the damage. The paper mainly discusses a hydraulic gradient-based leak detection method. The basic idea is outlined first, followed by a description of a laboratory experiment in a water pipeline. Several pressure curves are established based on different leak locations under the condition of a constant total flow rate. It is demonstrated that the leak of a large leak quantity can be detected reliably by the hydraulic gradient method.展开更多
When acoustic method is used in leak detection for natural gas pipelines,the external interferences including operation of compressor and valve,pipeline knocking,etc.,should be distinguished with acoustic leakage sign...When acoustic method is used in leak detection for natural gas pipelines,the external interferences including operation of compressor and valve,pipeline knocking,etc.,should be distinguished with acoustic leakage signals to improve the accuracy and reduce false alarms.In this paper,the technologies of extracting characteristics of acoustic signals were summarized.The acoustic leakage signals and interfering signals were measured by experiments and the characteristics of time-domain,frequency-domain and time-frequency domain were extracted.The main characteristics of time-domain are mean value,root mean square value,kurtosis,skewness and correlation function,etc.The features in frequency domain were obtained by frequency spectrum analysis and power spectrum density,while time-frequency analysis was accomplished by short time Fourier transform.The results show that the external interferences can be removed effectively by the characteristics of time domain,frequency domain and time-frequency domain.It can be drawn that the acoustic leak detection method can be applied to natural gas pipelines and the characteristics can help reduce false alarms and missing alarms.展开更多
A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of para...A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of parameter values was quantified by probability density function and updated by Bayesian theory. Values of the parameters were estimated based on Fisher’s law. The amount of leaks was estimated by back propagation neural network. Based on flow characteristics in water distribution systems, the location of leaks can be estimated. The effectiveness of the proposed method was illustrated by simulated leak data of node pressure head and flow rate of pipelines in a test pipe network, and the leaks were spotted accurately and renovated on time.展开更多
Liquid leak detection may represent a challenge for Oil&Gas operators,as indicated by operational feed-back and independent studies.Despite the availability of many different leak detection technologies,some syste...Liquid leak detection may represent a challenge for Oil&Gas operators,as indicated by operational feed-back and independent studies.Despite the availability of many different leak detection technologies,some systems may either fail to detect spills or generate frequent false alarms.In particular,possible soil contamination from pre-existing leaks and pollution carry-over by rain water is difficult to filter out by a leak sensing system.Typical case of false alarms relates to punctual sensors installed upstream the drain valve within the storage tank bunds,monitoring possible presence of leaks in rain water.Besides old soil contamination,other criteria should also be considered when selecting a spill detection technology,such as asset type to be monitored(storage tank,pipeline,…),system accuracy(minimum detectable quantity,ability to localize the leak),detection time,reliability over time,capital,installation and operating costs.The paper will include an evaluation of different external leak detection technologies with respect to the above-mentioned criteria,pointing out the capabilities and limitations of each system.Focus will be placed on reliability of leak monitoring systems in challenging environments.A new generation of digital,reusable sensing cables and probes,as well as the impact of sensitivity for different applications,will be discussed.Since leak sensor installation environment(positioning,adoption of special precautions,…)may significantly affect the system performance,different above ground and underground configurations will be presented,both for new builds and existing facilities.展开更多
Pipeline plays a vital role in transporting fluids like oils, water, and petrochemical substances for longer distances. Based on the materials they carry</span><span style="white-space:normal;font-size:1...Pipeline plays a vital role in transporting fluids like oils, water, and petrochemical substances for longer distances. Based on the materials they carry</span><span style="white-space:normal;font-size:10pt;font-family:"">,</span><span style="white-space:normal;font-size:10pt;font-family:""> prolonged usage may cause the initiation of defects in the pipeline. These defects occur due to the formed salt deposits, chemical reaction happens between the inner surface and the transferring substance, prevailing environmental conditions, etc. These defects, if not identified earlier may lead to significant losses to the industry. In this work, an in-line inspection system utilizes the nondestructive way for analyzing the internal defects in the petrochemical pipeline. This system consists of a pipeline inspection robot having two major units namely the visual inspection unit and the power carrier unit. The visual inspection unit makes use of a ring-type laser diode and the camera. The laser diode serves as a light source for capturing good quality images of inspection. This unit is controlled by the Arduino in the power carrier unit which provides the necessary movement throughout the pipe. The inspected images captured by the camera are further processed with the aid of NI vision assistant software. After applying the processing function parameters provided by this software, the defect location can be clearly visualized with high precision. Three sets of defects are introduced in a Polylactide (PLA) pipe based on its position and angle along the circumference of the pipe. Further, this robot system serves as a real-time interactive image synchronization system for acquiring the inspected images. By comparing the actual and calculated defect size, the error percentage obtained was less than 5%.展开更多
When a cold rolled strip is being treated in a continuous annealing furnace which is full of protective gas, the gas tightness of the furnace body, the connected facilities and the gas channels become an important ind...When a cold rolled strip is being treated in a continuous annealing furnace which is full of protective gas, the gas tightness of the furnace body, the connected facilities and the gas channels become an important indicator that directly affects the product's surface quality and shows the technical level of the design, the manufacture and the installation. By considering the problems of the gas tightness of a vertical annealing furnace in the installation and maintenance, this thesis evaluates the gas tightness indicator and gas tightness related level of the furnace body and the circulation duct, while studying and analyzing the technologies of negative-pressure leak detection and sealing.展开更多
基金supported,by National Natural Science Foundation of China(Program number:50105015,50375103)Program for New Century Excellent Talents in University(Program number:NCET-05-0110)+2 种基金Fok Ying Tung Education Foundation(Program number:91051)Beijing Nova Program(Program number:2003B33)CNPC Innovation Fund.
文摘Increasingly serious leak problem in pipeline transportation has not only affected the operation of pipelines but also caused loss of precious resource and environmental damage. Based on the analysis of the occurrence of negative pressure waves and the unsupervised learning of pattern recognition, the Interactive Self-organizing Data Analysis Technique Algorithm (ISODATA) method was used to classify the negative pressure waves and then the states of pipelines could be determined. K L transformation was used to eliminate the correlativity of feature parameters and to reduce the dimensionality of feature vector space to speed up calculation. Experimental results validated the accuracy and practical value of this method.
文摘The leakage control is an important task, because it is associated with some problems such as economic loss, safety concerns, and environmental damages. The pervious methods which have already been devised for leakage detection are not only expensive and time consuming, but also have a low efficient. As a result, the global leakage detection methods such as leak detection based on simulation and calibration of the network have been considered recently. In this research, leak detection based on calibration in two hypothetical and a laboratorial networks is considered. Additionally a novel optimization method called step-by-step elimination method (SSEM) combining with a genetic algorithm (GA) is introduced to calibration and leakage detection in networks. This method step-by-step detects and eliminates the nodes that provide no contribution in leakage among uncertain parameters of calibration of a network. The proposed method initiates with an ordinary calibration for a studied network, follow by elimination of suspicious nodes among adjusted parameters, then, the network is re-calibrated. Finally the process is repeated until the numbers of unknown demands are equal to the desired numbers or the exact leakage locations and values are determined. These investigations illustrate the capability of this method for detecting the locations and sizes of leakages.
文摘A quantitative risk assessment (QRA) based on leak detection criteria (LDC) for the design of a proposed subsea oil export pipeline is presented in this paper. The objective of this QRA/LDC study was to determine if current leak detection methodologies were sufficient, based on QRA results, while excluding the use of statistical leak detection; if not, an appropriate LDC for the leak detection system would need to be established. The famous UK PARLOC database was used for the calculation of pipeline failure rates, and the software POSVCM from MMS was used for oil spill simulations. QRA results revealed that the installation of a statistically based leak detection system (LDS) can significantly reduce time to leak detection, thereby mitigating the consequences of leakage. A sound LDC has been defined based on QRA study results and comments from various LDS vendors to assist the emergency response team (ERT) to quickly identify and locate leakage and employ the most effective measures to contain damage.
基金supported by National Key Research and Development Program of China (No. 2016YFC0302102)Fundamental Research Funds for the Central Universities (No. 201822003)
文摘Laser-induced breakdown spectroscopy(LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was investigated by using a compact LIBS-sea system developed by Ocean University of China for the in-situ chemical analysis of seawater. The results from the field measurements show that the liquid pressure has a significant effect on the LIBS signals. Higher peak intensity and larger line broadening were obtained as the pressure increases. By comparing the variations of the temperature and salinity with the LIBS signals, a weak correlation between them can be observed. Under high pressure conditions, the optimal laser energy was higher than that in air environment. When the laser energy exceeded 17 mJ, the effect of laser energy on the signal intensity weakened. The signal intensity decreases gradually at larger delays. The obtained results verified the feasibility of the LIBS technique for the deep-sea in-situ detection, and we hope this technology can contribute to surveying more deep-sea environments such as the hydrothermal vent regions.
文摘This paper examines the advances in pipeline third party encroachment alert systems and leak control methods in the oil/gas industry. It also highlights the extent of spill/pollution issues in the Niger Delta region due to intended/unin- tended damages and suggests a possible method of control. It is believed that the best option to avoid pollution due to pipeline failure is to ensure that hydrocarbon does not exit from the pipeline. With the different methods considered in this review, acoustic monitoring of change in the operational sound generated from a given pipeline section is suggested to be practicable to identifying sound abnormalities of third party encroachments. One established challenge of the acoustic system for buried pipelines protection is attenuation of acoustic transmission. An attempt to check the performance of an acoustic transmission on steel pipelines submerged in water points to a similar research on plastic water pipelines that attenuation is small compared with pipe buried in soil. Fortunately, Niger Delta of Nigeria is made of wetland, swamps and shallow water and could therefore offer an opportunity to deploy acoustic system for the safety of pipelines against third party attacks in this region. However, the numerous configuration and quantity of oil installation in this region imply that cost of application will be enormous. It is therefore suggested that a combination of impressed alternating cycle current (IACC) which traces encroachment on the pipeline coating and an acoustic system be used to manage intended and unintended pipeline potential damages. The IACC should be used for flow lines and other short distance delivery lines within the oilfield, while the relatively large diameter and long length delivery, trunk and transmission lines should be considered for acoustic protection. It is, however, noted that further efforts are required to reduce cost and improve effectiveness of these systems.
文摘Leakage from pipelines has caused serious environmental pollution and economic losses. Usually, leak detection can reduce the damage. The paper mainly discusses a hydraulic gradient-based leak detection method. The basic idea is outlined first, followed by a description of a laboratory experiment in a water pipeline. Several pressure curves are established based on different leak locations under the condition of a constant total flow rate. It is demonstrated that the leak of a large leak quantity can be detected reliably by the hydraulic gradient method.
基金funded by the National Science Foundation of China(51774313)Shandong Provincial Key R&D Program(2017GSF220007)National Key R&D Program of China(2016YFC0802104).
文摘When acoustic method is used in leak detection for natural gas pipelines,the external interferences including operation of compressor and valve,pipeline knocking,etc.,should be distinguished with acoustic leakage signals to improve the accuracy and reduce false alarms.In this paper,the technologies of extracting characteristics of acoustic signals were summarized.The acoustic leakage signals and interfering signals were measured by experiments and the characteristics of time-domain,frequency-domain and time-frequency domain were extracted.The main characteristics of time-domain are mean value,root mean square value,kurtosis,skewness and correlation function,etc.The features in frequency domain were obtained by frequency spectrum analysis and power spectrum density,while time-frequency analysis was accomplished by short time Fourier transform.The results show that the external interferences can be removed effectively by the characteristics of time domain,frequency domain and time-frequency domain.It can be drawn that the acoustic leak detection method can be applied to natural gas pipelines and the characteristics can help reduce false alarms and missing alarms.
基金Supported by National Natural Science Foundation of China (No. 50278062 and 50578108)Science and Technology Innovation Funds Project of Tianjin, China (No. 08FDZDSF03200)
文摘A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of parameter values was quantified by probability density function and updated by Bayesian theory. Values of the parameters were estimated based on Fisher’s law. The amount of leaks was estimated by back propagation neural network. Based on flow characteristics in water distribution systems, the location of leaks can be estimated. The effectiveness of the proposed method was illustrated by simulated leak data of node pressure head and flow rate of pipelines in a test pipe network, and the leaks were spotted accurately and renovated on time.
文摘Liquid leak detection may represent a challenge for Oil&Gas operators,as indicated by operational feed-back and independent studies.Despite the availability of many different leak detection technologies,some systems may either fail to detect spills or generate frequent false alarms.In particular,possible soil contamination from pre-existing leaks and pollution carry-over by rain water is difficult to filter out by a leak sensing system.Typical case of false alarms relates to punctual sensors installed upstream the drain valve within the storage tank bunds,monitoring possible presence of leaks in rain water.Besides old soil contamination,other criteria should also be considered when selecting a spill detection technology,such as asset type to be monitored(storage tank,pipeline,…),system accuracy(minimum detectable quantity,ability to localize the leak),detection time,reliability over time,capital,installation and operating costs.The paper will include an evaluation of different external leak detection technologies with respect to the above-mentioned criteria,pointing out the capabilities and limitations of each system.Focus will be placed on reliability of leak monitoring systems in challenging environments.A new generation of digital,reusable sensing cables and probes,as well as the impact of sensitivity for different applications,will be discussed.Since leak sensor installation environment(positioning,adoption of special precautions,…)may significantly affect the system performance,different above ground and underground configurations will be presented,both for new builds and existing facilities.
文摘Pipeline plays a vital role in transporting fluids like oils, water, and petrochemical substances for longer distances. Based on the materials they carry</span><span style="white-space:normal;font-size:10pt;font-family:"">,</span><span style="white-space:normal;font-size:10pt;font-family:""> prolonged usage may cause the initiation of defects in the pipeline. These defects occur due to the formed salt deposits, chemical reaction happens between the inner surface and the transferring substance, prevailing environmental conditions, etc. These defects, if not identified earlier may lead to significant losses to the industry. In this work, an in-line inspection system utilizes the nondestructive way for analyzing the internal defects in the petrochemical pipeline. This system consists of a pipeline inspection robot having two major units namely the visual inspection unit and the power carrier unit. The visual inspection unit makes use of a ring-type laser diode and the camera. The laser diode serves as a light source for capturing good quality images of inspection. This unit is controlled by the Arduino in the power carrier unit which provides the necessary movement throughout the pipe. The inspected images captured by the camera are further processed with the aid of NI vision assistant software. After applying the processing function parameters provided by this software, the defect location can be clearly visualized with high precision. Three sets of defects are introduced in a Polylactide (PLA) pipe based on its position and angle along the circumference of the pipe. Further, this robot system serves as a real-time interactive image synchronization system for acquiring the inspected images. By comparing the actual and calculated defect size, the error percentage obtained was less than 5%.
文摘When a cold rolled strip is being treated in a continuous annealing furnace which is full of protective gas, the gas tightness of the furnace body, the connected facilities and the gas channels become an important indicator that directly affects the product's surface quality and shows the technical level of the design, the manufacture and the installation. By considering the problems of the gas tightness of a vertical annealing furnace in the installation and maintenance, this thesis evaluates the gas tightness indicator and gas tightness related level of the furnace body and the circulation duct, while studying and analyzing the technologies of negative-pressure leak detection and sealing.