The kinetic parameters of hydrocarbon generation are determined through experimental simulation and mathematical calculation using four typical samples selected from the Cretaceous Nenjiang Formation in the northwest ...The kinetic parameters of hydrocarbon generation are determined through experimental simulation and mathematical calculation using four typical samples selected from the Cretaceous Nenjiang Formation in the northwest of Songliao Basin,Chang 7 Member of Triassic Yanchang Formation in the southwest of Ordos Basin,Paleogene in the southwest of Qaidam Basin,and Lucaogou Formation of Jimusar Sag in the east of Junggar Basin.The results show that activation energy of hydrocarbon generation of organic matter is closely related to maturity and mainly ranges between 197 kJ/mol and 227 kJ/mol.On this basis,the temperature required for organic matter in shale to convert into oil was calculated.The ideal heating temperature is between 270℃and 300℃,and the conversation rate can reach 90%after 50-300 days of heating at constant temperature.When the temperature rises at a constant rate,the temperature corresponding to the major hydrocarbon generation period ranges from 225 to 350℃at the temperature rise rate of 1-150℃/month.In order to obtain higher economic benefits,it is suggested to adopt higher temperature rise rate(60-150℃/month).The more reliable kinetic parameters obtained can provide a basis for designing more reasonable scheme of in-situ heating conversion.展开更多
Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the m...Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG.展开更多
目的研究铌酸锂调制器加速储存寿命的评估方法。方法基于韦布尔分布的方法,应用加速老化寿命评估试验理论和技术,建立恒加速应力老化寿命评估的理论模型。对集成光学调制器在不同温度应力下的加速贮存寿命进行统计,分析不同时间段器件...目的研究铌酸锂调制器加速储存寿命的评估方法。方法基于韦布尔分布的方法,应用加速老化寿命评估试验理论和技术,建立恒加速应力老化寿命评估的理论模型。对集成光学调制器在不同温度应力下的加速贮存寿命进行统计,分析不同时间段器件失效概率,对其可靠性进行评估。结果计算出了器件韦布尔分布的形状参数m为0.314,表明调制器贮存时早期失效多。结论通过对器件失效数据进行分析,确定了阿伦尼斯加速模型,并计算其激活能为1.1 e V,分析得到在25℃环境条件下Li Nb O_3调制器器件贮存1年的可靠度为0.9454。展开更多
为减少电力系统网侧电流谐波并提高电网电能质量,本文采用状态误差端口受控哈密顿控制方法,实现对三相三线制有源电力滤波器的补偿电流实时控制和直流侧电压恒定控制。在dq旋转坐标系下,建立有源电力滤波器的PCH状态平均数学模型,构建...为减少电力系统网侧电流谐波并提高电网电能质量,本文采用状态误差端口受控哈密顿控制方法,实现对三相三线制有源电力滤波器的补偿电流实时控制和直流侧电压恒定控制。在dq旋转坐标系下,建立有源电力滤波器的PCH状态平均数学模型,构建了期望的闭环状态误差PCH系统,并根据系统的设计目标确定了系统期望平衡点;根据能量成形原理求出期望的闭环哈密顿PCH函数,并依据阻尼和互联配置设计了APF控制器。同时,运用比例积分控制(proportional integral control,PI)方法设计控制器,确保直流侧母线电压恒定。为了验证该控制策略的合理性,采用Matlab/Simulink软件进行仿真分析。仿真结果表明,基于状态误差PCH控制方法的有源电力滤波器对谐波起到了很好的抑制作用;在APF直流侧母线电压趋于恒定情况下,经过APF补偿的电力系统网侧电流中的谐波含量大大降低,达到控制目标,具有良好的稳态和动态控制性能。该研究具有一定的应用价值。展开更多
基金Supported by the PetroChina Science and Technology Major Project(2016E-0101).
文摘The kinetic parameters of hydrocarbon generation are determined through experimental simulation and mathematical calculation using four typical samples selected from the Cretaceous Nenjiang Formation in the northwest of Songliao Basin,Chang 7 Member of Triassic Yanchang Formation in the southwest of Ordos Basin,Paleogene in the southwest of Qaidam Basin,and Lucaogou Formation of Jimusar Sag in the east of Junggar Basin.The results show that activation energy of hydrocarbon generation of organic matter is closely related to maturity and mainly ranges between 197 kJ/mol and 227 kJ/mol.On this basis,the temperature required for organic matter in shale to convert into oil was calculated.The ideal heating temperature is between 270℃and 300℃,and the conversation rate can reach 90%after 50-300 days of heating at constant temperature.When the temperature rises at a constant rate,the temperature corresponding to the major hydrocarbon generation period ranges from 225 to 350℃at the temperature rise rate of 1-150℃/month.In order to obtain higher economic benefits,it is suggested to adopt higher temperature rise rate(60-150℃/month).The more reliable kinetic parameters obtained can provide a basis for designing more reasonable scheme of in-situ heating conversion.
文摘Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG.
文摘目的研究铌酸锂调制器加速储存寿命的评估方法。方法基于韦布尔分布的方法,应用加速老化寿命评估试验理论和技术,建立恒加速应力老化寿命评估的理论模型。对集成光学调制器在不同温度应力下的加速贮存寿命进行统计,分析不同时间段器件失效概率,对其可靠性进行评估。结果计算出了器件韦布尔分布的形状参数m为0.314,表明调制器贮存时早期失效多。结论通过对器件失效数据进行分析,确定了阿伦尼斯加速模型,并计算其激活能为1.1 e V,分析得到在25℃环境条件下Li Nb O_3调制器器件贮存1年的可靠度为0.9454。
文摘为减少电力系统网侧电流谐波并提高电网电能质量,本文采用状态误差端口受控哈密顿控制方法,实现对三相三线制有源电力滤波器的补偿电流实时控制和直流侧电压恒定控制。在dq旋转坐标系下,建立有源电力滤波器的PCH状态平均数学模型,构建了期望的闭环状态误差PCH系统,并根据系统的设计目标确定了系统期望平衡点;根据能量成形原理求出期望的闭环哈密顿PCH函数,并依据阻尼和互联配置设计了APF控制器。同时,运用比例积分控制(proportional integral control,PI)方法设计控制器,确保直流侧母线电压恒定。为了验证该控制策略的合理性,采用Matlab/Simulink软件进行仿真分析。仿真结果表明,基于状态误差PCH控制方法的有源电力滤波器对谐波起到了很好的抑制作用;在APF直流侧母线电压趋于恒定情况下,经过APF补偿的电力系统网侧电流中的谐波含量大大降低,达到控制目标,具有良好的稳态和动态控制性能。该研究具有一定的应用价值。