An in situ observation of the s'phase morphology and its orientation with the matrix in an Al-Li base alloy was carried out by means of double-tilt rotating around[220]a in a transmission electron microscope(TEM)....An in situ observation of the s'phase morphology and its orientation with the matrix in an Al-Li base alloy was carried out by means of double-tilt rotating around[220]a in a transmission electron microscope(TEM).The results show that the s'phase precipitates in the form of bundles.The units of s'phase are lath-shaped,grow along the<100>,orientation,and have habit planes of{210}*.Many units of the s'phase grow in the same orientation and get together to form a plate-shaped bundle of s'phase laths which lie on the{110}a planes.展开更多
The atmospheric corrosion behavior of bronze under thin electrolyte layer (TEL) with different thicknesses was monitored using cathodic polarization curves, open circuit potential (OCP) and electrochemical impedan...The atmospheric corrosion behavior of bronze under thin electrolyte layer (TEL) with different thicknesses was monitored using cathodic polarization curves, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). Cathodic polarization result indicates that the cathodic limiting current density increases with decreasing the TEL thickness. EIS result shows that the corrosion rate increases with decreasing the TEL thickness at the initial stage because the corrosion is dominated by the cathodic process, whereas after long immersion time, the corrosion degree with the TEL thickness is in the sequence of 150 μm 〉 310 μm〉 10μm ≈ bulk solution 〉 57 μm. The measurements of OCP and EIS present in-situ electrochemical corrosion information and their results are in good agreement with that of physical characterizations.展开更多
20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents ...20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents of internal tides are energetic and diurnal constituents (O1 and K1) are dominating. In the observational period, the current vectors of these four constituents all rotate clockwise and the maximum semi-major axe of internal tidal ellipses is more than 14 cm/s. The variation of ocean temperature shows that the internal tides present obvious quasi-diurnal oscillation and the average amplitude reaches 50 m. Furthermore, these internal tides carry high energy and appear to be intermittent. The maximum values of KE (PE) during the observational period are up to 2 (3.5) k J/m^2 for diurnal internal tides, and up to 1 (1.5) k J/m^2 for semidiurnal internal tides.展开更多
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu...The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.展开更多
Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applica...Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research.展开更多
The catalytic conversion of CO_(2) to fuels or chemicals is considered to be an effective pathway to mitigate the greenhouse effect. To develop new types of efficient and durable catalysts, it is critical to identify ...The catalytic conversion of CO_(2) to fuels or chemicals is considered to be an effective pathway to mitigate the greenhouse effect. To develop new types of efficient and durable catalysts, it is critical to identify the catalytic active sites, surface intermediates, and reaction mechanisms to reveal the relationship between the active sites and catalytic performance. However, the structure of a heterogeneous catalyst usually dynamically changes during reaction, bringing a great challenge for the identification of catalytic active sites and reaction pathways. Therefore, in-situ/operando techniques have been employed to real-time monitor the dynamic evolution of the structure of active sites under actual reaction conditions to precisely build the structure–function relationship. Here, we review the recent progress in the application of various in-situ/operando techniques in identifying active sites for catalytic conversion of CO_(2) over heterogeneous catalysts. We systematically summarize the applications of various optical and X-ray spectroscopy techniques, including Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), in identifying active sites and determining reaction mechanisms of the CO_(2) thermochemical conversion with hydrogen and light alkanes over heterogeneous catalysts. Finally, we discuss challenges and opportunities for the development of in-situ characterization in the future to further enlarge the capability of these powerful techniques.展开更多
The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two m...The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.展开更多
The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and tempora...The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and temporal scales. However, there are still challenges for reproducing accurate model-simulated CO_2 concentrations close to the surface, typically associated with high spatial heterogeneity and land cover. In the present study, we evaluated the performance of nested-grid CT model simulations of CO_2 based on the CT2016 version through comparison with in-situ observations over East Asia covering the period 2009–13. We selected sites located in coastal, remote, inland, and mountain areas. The results are presented at diurnal and seasonal time periods. At target stations, model agreement with in-situ observations was varied in capturing the diurnal cycle. Overall, biases were less than 6.3 ppm on an all-hourly mean basis, and this was further reduced to a maximum of 4.6 ppm when considering only the daytime. For instance, at Anmyeondo, a small bias was obtained in winter, on the order of 0.2 ppm. The model revealed a diurnal amplitude of CO_2 that was nearly flat in winter at Gosan and Anmyeondo stations, while slightly overestimated in the summertime. The model's performance in reproducing the diurnal cycle remains a challenge and requires improvement. The model showed better agreement with the observations in capturing the seasonal variations of CO_2 during daytime at most sites, with a correlation coefficient ranging from 0.70 to 0.99. Also, model biases were within-0.3 and 1.3 ppm, except for inland stations(7.7 ppm).展开更多
In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in th...In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.展开更多
Lunar optical polarization is a fascinating phenomenon that occurs when sunlight reflects off the surface of the Moon and becomes polarized.This study employs a novel split-focus plane polarimetric camera to conduct t...Lunar optical polarization is a fascinating phenomenon that occurs when sunlight reflects off the surface of the Moon and becomes polarized.This study employs a novel split-focus plane polarimetric camera to conduct the initial white light polarimetric observations on the near side of the Moon.We obtained the linear degree of polarization(DOP)parameters of white light by observation from the eastern and western hemispheres of the Moon.The findings indicate that the white light polarization is lower in the lunar highland than in the lunar maria overall.Combining the analysis of lunar soil samples,we noticed and determined that the DOP parameters of white light demonstrate high consistency with iron oxide on the Moon.This study may serve as a new diagnostic tool for the Moon.展开更多
Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is ...Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.展开更多
LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe...LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe PO4 olivine cathodes.Understanding the phase transition behaviors and kinetics of this material will help researchers to design and develop next generation cathodes for Li-ion batteries.In this study,we investigated non-equilibrium phase transition behaviors in a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material during charge–discharge processes by varying current rates(C-rates)using synchrotron in-situ X-ray techniques.These methods included wide angle X-ray scattering(in-situ WAXS)and X-ray absorption spectroscopy(in-situ XAS).The WAXS spectra indicate that the phase transition of LiMn_(0.5)Fe_(0.5)PO_(4) material at slow C-rates is induced by a two-phase reaction.In contrast,at a high C-rate(5 C),the formation of an intermediate phase upon discharge is clearly observed.Concurrently,the oxidation numbers of the redox reactions of Fe^(2+)/Fe^(3+)and Mn^(2+)/Mn^(3+)were evaluated using in-situ XAS.This combination of synchrotron in-situ X-ray techniques gives clear insights into the non-equilibrium phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material.This new understanding will be useful for further developments of this highly promising cathode material for practical commercialization.展开更多
Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms tha...Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate, except for the extremes of high wind speeds (>13.8m/s) and very low wind speeds (<1.5m/s) where direction is poorly predicted. In-situ observations show that the summer monsoon in the northern SCS starts between May 6 and June 1. From March 13, 2010 to August 31, 2010, comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands, as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT, ASCAT and AMSR-E data are good enough for research. It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements. Remarkable changes were observed in wind, barometric pressure, humidity, outgoing longwave radiation (OLR), air temperature, rainfall and SST during the monsoon onset. The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS. The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt, and then the belt bifurcates in the SCS, with one part moving northeastward into the tropical western North Pacific, and another southward into western Kalimantan. This largely determined the pattern of the SCS summer monsoon. Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer. This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.展开更多
The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irrad...The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.展开更多
Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress ...Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress measurement are not very suitable. The current techniquesof in--situ stress measurement and their insufficiency for use at great depth are analyzed. Somebasic ideas of the development of new techniques and the improvement of current techniques for useat great depth are provided.展开更多
Objective In geo-marine science,the generalized bottom boundary layer(BBL)represents a layer between sediments and seawater.The BBL plays an important role in geological,geobiochemical,geophysical and geotechnical r...Objective In geo-marine science,the generalized bottom boundary layer(BBL)represents a layer between sediments and seawater.The BBL plays an important role in geological,geobiochemical,geophysical and geotechnical research because it is the connection region of hydrosphere,展开更多
The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations...The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations show that the interfaces between 24 martensite variants have different reaction to applied stress. The A/C type and A/B type interfaces have good mobil-ity, the A/D type interface has bad mobiIity, and the different-group-intervariant interfaces are basically immobile.展开更多
In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number ...In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number of the dark phases culminated in about 50 s during soaking at 900℃. With the increase of soaking time the area proportion of the dark phases increased and reached the maximum value in about 3 min, When temperature rose from 900 ℃, the dark phases remained steady initially, but started to dissolve into the matrix at about 1 060 ℃ and completely disappeared at 1 132℃. When the specimen soaked at 900 ℃ was cooled down to room temperature (RT), the dark phases kept stable. Energy spectrum analysis results showed that the dark phases contained much more Cr and Mn elements than the matrix and,were also rich in V. Tensile test results showed that the dark phase strengthened the steel with the maximum tensile strength obtained after soaking at 900 ℃ for 3 minutes.展开更多
In-situ straining SEM observations of an intermetallic Al67Mn8Ti25 alloy were carried out on sheet specimens containing notch with root radius about 100μm. The results show that the crack initiation occurs at notch r...In-situ straining SEM observations of an intermetallic Al67Mn8Ti25 alloy were carried out on sheet specimens containing notch with root radius about 100μm. The results show that the crack initiation occurs at notch root along grain boundary, and it grows very rapidly in transgranular manner. During the crack growing, some crack branches and segments are formed. Occasionally when the crack propagates in the direction close to grain boundary, it grows intergranularly along a part of boundary. The observed crack propagation process indicates that the alloy is very brittle at ambient temperatures.展开更多
The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack t...The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack tip reveals to blunt firstly,and some holes and uncontinuous microcraeks occur in front of it.The growth is developed by bridging of main crack together with holes and microcracks.展开更多
文摘An in situ observation of the s'phase morphology and its orientation with the matrix in an Al-Li base alloy was carried out by means of double-tilt rotating around[220]a in a transmission electron microscope(TEM).The results show that the s'phase precipitates in the form of bundles.The units of s'phase are lath-shaped,grow along the<100>,orientation,and have habit planes of{210}*.Many units of the s'phase grow in the same orientation and get together to form a plate-shaped bundle of s'phase laths which lie on the{110}a planes.
基金Projects (51131005, 51171172, 50801056) supported by the National Natural Science Foundation of ChinaProject (Y4110074) supported by Natural Science Foundation of Zhejiang Province, China
文摘The atmospheric corrosion behavior of bronze under thin electrolyte layer (TEL) with different thicknesses was monitored using cathodic polarization curves, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). Cathodic polarization result indicates that the cathodic limiting current density increases with decreasing the TEL thickness. EIS result shows that the corrosion rate increases with decreasing the TEL thickness at the initial stage because the corrosion is dominated by the cathodic process, whereas after long immersion time, the corrosion degree with the TEL thickness is in the sequence of 150 μm 〉 310 μm〉 10μm ≈ bulk solution 〉 57 μm. The measurements of OCP and EIS present in-situ electrochemical corrosion information and their results are in good agreement with that of physical characterizations.
基金supported by the National Natural Science Foundation of China (No.41176025, 40876008)the SCSMEX project
文摘20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents of internal tides are energetic and diurnal constituents (O1 and K1) are dominating. In the observational period, the current vectors of these four constituents all rotate clockwise and the maximum semi-major axe of internal tidal ellipses is more than 14 cm/s. The variation of ocean temperature shows that the internal tides present obvious quasi-diurnal oscillation and the average amplitude reaches 50 m. Furthermore, these internal tides carry high energy and appear to be intermittent. The maximum values of KE (PE) during the observational period are up to 2 (3.5) k J/m^2 for diurnal internal tides, and up to 1 (1.5) k J/m^2 for semidiurnal internal tides.
基金supported by the National Natural Science Foundation of China(Nos.51909136 and 42177168)Project of Youth Inno vation Promotion Association of Chinese Academy of Sciences(No.2021326)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ03)。
文摘The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20170630)the National Natural Science Foundation of China(51802149 and U1801251)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Nanjing University Technology Innovation Fund Project。
文摘Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research.
基金Authors acknowledge the financial support from the National Natural Science Foundation of China(NSFC)under Grant No.21978148 and 21808120.
文摘The catalytic conversion of CO_(2) to fuels or chemicals is considered to be an effective pathway to mitigate the greenhouse effect. To develop new types of efficient and durable catalysts, it is critical to identify the catalytic active sites, surface intermediates, and reaction mechanisms to reveal the relationship between the active sites and catalytic performance. However, the structure of a heterogeneous catalyst usually dynamically changes during reaction, bringing a great challenge for the identification of catalytic active sites and reaction pathways. Therefore, in-situ/operando techniques have been employed to real-time monitor the dynamic evolution of the structure of active sites under actual reaction conditions to precisely build the structure–function relationship. Here, we review the recent progress in the application of various in-situ/operando techniques in identifying active sites for catalytic conversion of CO_(2) over heterogeneous catalysts. We systematically summarize the applications of various optical and X-ray spectroscopy techniques, including Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), in identifying active sites and determining reaction mechanisms of the CO_(2) thermochemical conversion with hydrogen and light alkanes over heterogeneous catalysts. Finally, we discuss challenges and opportunities for the development of in-situ characterization in the future to further enlarge the capability of these powerful techniques.
基金supported by the National High-Tech Research and Development Program of China (No.2008AA03E502)the Science and Technology Support Program of China (No.2006BAE03A06)
文摘The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.
基金supported by the Korea Meteorological Administration Research and Development Program "Research and Development for KMA Weather, and Earth system Services-Development and Assessment of AR6 Climate Change Scenarios" under Grant (KMA2018-00321)
文摘The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and temporal scales. However, there are still challenges for reproducing accurate model-simulated CO_2 concentrations close to the surface, typically associated with high spatial heterogeneity and land cover. In the present study, we evaluated the performance of nested-grid CT model simulations of CO_2 based on the CT2016 version through comparison with in-situ observations over East Asia covering the period 2009–13. We selected sites located in coastal, remote, inland, and mountain areas. The results are presented at diurnal and seasonal time periods. At target stations, model agreement with in-situ observations was varied in capturing the diurnal cycle. Overall, biases were less than 6.3 ppm on an all-hourly mean basis, and this was further reduced to a maximum of 4.6 ppm when considering only the daytime. For instance, at Anmyeondo, a small bias was obtained in winter, on the order of 0.2 ppm. The model revealed a diurnal amplitude of CO_2 that was nearly flat in winter at Gosan and Anmyeondo stations, while slightly overestimated in the summertime. The model's performance in reproducing the diurnal cycle remains a challenge and requires improvement. The model showed better agreement with the observations in capturing the seasonal variations of CO_2 during daytime at most sites, with a correlation coefficient ranging from 0.70 to 0.99. Also, model biases were within-0.3 and 1.3 ppm, except for inland stations(7.7 ppm).
基金funded by the Natural Science Foundation of China under grant No:50771031GM Research Funding under contract No:GM-RP-07-211
文摘In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.
基金supported by the National Key Research and Development Program of China(2021YFA0715101)partly supported by a National LLR station project+2 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.11973064 and 42101413)Jilin Province Mid-youth science and technology innovation and entrepreneurship outstanding talent project(20220508147RC)the Changchun City and Chinese Academy of Sciences Science and Technology Cooperation High-tech Industrialization Special Fund Project(21SH05)。
文摘Lunar optical polarization is a fascinating phenomenon that occurs when sunlight reflects off the surface of the Moon and becomes polarized.This study employs a novel split-focus plane polarimetric camera to conduct the initial white light polarimetric observations on the near side of the Moon.We obtained the linear degree of polarization(DOP)parameters of white light by observation from the eastern and western hemispheres of the Moon.The findings indicate that the white light polarization is lower in the lunar highland than in the lunar maria overall.Combining the analysis of lunar soil samples,we noticed and determined that the DOP parameters of white light demonstrate high consistency with iron oxide on the Moon.This study may serve as a new diagnostic tool for the Moon.
基金supported by Swedish Institute of Sweden (No. 200/01954/2007/China Bilateral programme)
文摘Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.
基金the Science Achievement Scholarship of Thailand(SAST)for financial supportpartially supported by the Institute of Nanomaterials Research and Innovation for Energy(IN-RIE)+1 种基金the Research and Graduate Studies,Khon Kaen University(KKU)Synchrotron Light Research Institute(SLRI),Thailand。
文摘LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe PO4 olivine cathodes.Understanding the phase transition behaviors and kinetics of this material will help researchers to design and develop next generation cathodes for Li-ion batteries.In this study,we investigated non-equilibrium phase transition behaviors in a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material during charge–discharge processes by varying current rates(C-rates)using synchrotron in-situ X-ray techniques.These methods included wide angle X-ray scattering(in-situ WAXS)and X-ray absorption spectroscopy(in-situ XAS).The WAXS spectra indicate that the phase transition of LiMn_(0.5)Fe_(0.5)PO_(4) material at slow C-rates is induced by a two-phase reaction.In contrast,at a high C-rate(5 C),the formation of an intermediate phase upon discharge is clearly observed.Concurrently,the oxidation numbers of the redox reactions of Fe^(2+)/Fe^(3+)and Mn^(2+)/Mn^(3+)were evaluated using in-situ XAS.This combination of synchrotron in-situ X-ray techniques gives clear insights into the non-equilibrium phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material.This new understanding will be useful for further developments of this highly promising cathode material for practical commercialization.
基金Supported by the National Basic Research Program of China (973 Program)(No. 2011CB403504)the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX2-YW-Q11-02, KZCX2-YW-Y202)the National Natural Science Foundation of China (Nos. 40830851, 41006011)
文摘Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate, except for the extremes of high wind speeds (>13.8m/s) and very low wind speeds (<1.5m/s) where direction is poorly predicted. In-situ observations show that the summer monsoon in the northern SCS starts between May 6 and June 1. From March 13, 2010 to August 31, 2010, comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands, as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT, ASCAT and AMSR-E data are good enough for research. It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements. Remarkable changes were observed in wind, barometric pressure, humidity, outgoing longwave radiation (OLR), air temperature, rainfall and SST during the monsoon onset. The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS. The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt, and then the belt bifurcates in the SCS, with one part moving northeastward into the tropical western North Pacific, and another southward into western Kalimantan. This largely determined the pattern of the SCS summer monsoon. Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer. This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1967211,U1832112,and 11975191).
文摘The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.
文摘Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress measurement are not very suitable. The current techniquesof in--situ stress measurement and their insufficiency for use at great depth are analyzed. Somebasic ideas of the development of new techniques and the improvement of current techniques for useat great depth are provided.
基金supported by the National Natural Science Foundation of China (grants No.41427803 amd 41272316)
文摘Objective In geo-marine science,the generalized bottom boundary layer(BBL)represents a layer between sediments and seawater.The BBL plays an important role in geological,geobiochemical,geophysical and geotechnical research because it is the connection region of hydrosphere,
文摘The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations show that the interfaces between 24 martensite variants have different reaction to applied stress. The A/C type and A/B type interfaces have good mobil-ity, the A/D type interface has bad mobiIity, and the different-group-intervariant interfaces are basically immobile.
基金Shougang Research Institute of Technology for the financial support to this project
文摘In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number of the dark phases culminated in about 50 s during soaking at 900℃. With the increase of soaking time the area proportion of the dark phases increased and reached the maximum value in about 3 min, When temperature rose from 900 ℃, the dark phases remained steady initially, but started to dissolve into the matrix at about 1 060 ℃ and completely disappeared at 1 132℃. When the specimen soaked at 900 ℃ was cooled down to room temperature (RT), the dark phases kept stable. Energy spectrum analysis results showed that the dark phases contained much more Cr and Mn elements than the matrix and,were also rich in V. Tensile test results showed that the dark phase strengthened the steel with the maximum tensile strength obtained after soaking at 900 ℃ for 3 minutes.
文摘In-situ straining SEM observations of an intermetallic Al67Mn8Ti25 alloy were carried out on sheet specimens containing notch with root radius about 100μm. The results show that the crack initiation occurs at notch root along grain boundary, and it grows very rapidly in transgranular manner. During the crack growing, some crack branches and segments are formed. Occasionally when the crack propagates in the direction close to grain boundary, it grows intergranularly along a part of boundary. The observed crack propagation process indicates that the alloy is very brittle at ambient temperatures.
文摘The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack tip reveals to blunt firstly,and some holes and uncontinuous microcraeks occur in front of it.The growth is developed by bridging of main crack together with holes and microcracks.