In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine ...In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine room.Different types of structural configuration might influence air distribution inside these devices.The unreasonable air distribution might lead each part of filtration or purification media to operating at largely different air flow rates.Based on a computational fluid dynamics(CFD)model,this study explores the influence of different outlet positions and different upper heights on the flow field inside chamber.The porous medium model is employed to simulate the air flow in porous media.The changing structural configurations include three positioning cases of the outlet opening and eight height cases of the upper chamber.The root mean square is defined as the non-uniformity coefficient to evaluate the uniformity of air flow distribution.The results show that the farther distance between inlet and outlet openings will bring more uniform air distribution,and the increasing height of upper chamber totally trends to exhibit more uniform air distribution.展开更多
The highly efficient KQ series Kangquan brand water mineralization and purification devices for faucets, produced by the Tianjin Kangquan Purification Equipment Factory, enables people to obtain pure mineralized water...The highly efficient KQ series Kangquan brand water mineralization and purification devices for faucets, produced by the Tianjin Kangquan Purification Equipment Factory, enables people to obtain pure mineralized water from their taps. The products combine the strong points展开更多
Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater.Despite much effort made into photothermal materials,there is an urgent need ...Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater.Despite much effort made into photothermal materials,there is an urgent need to design a rapidly synthesized photothermal evaporator for the comprehensive purification of complex seawater.Therefore,we report on all-in-one FeOx-rGO photothermal sponges synthesized via solid-phase microwave thermal shock.The narrow band gap of the semiconductor material Fe_(3)O_(4) greatly reduces the recombination of electron-hole pairs,enhancing non-radiative relaxation light absorption.The abundantπorbitals in rGO promote electron excitation and thermal vibration between the lattices.Control of the surface hydrophilicity and hydrophobicity promotes salt resistance while simultaneously achieving the purification of various complex polluted waters.The optimized GFM-3 sponge exhibitedan enhanced photothermal conversion rate of 97.3% and a water evaporation rate of 2.04 kg/(m^(2)·hr),showing promising synergistic water purification properties.These findings provide a highly efficient photothermal sponge for practical applicationsof seawater desalination and purification,as well as develop a super-rapid processing methodology for evaporation devices.展开更多
基金National Key Research and Development Program of China(No.2018YFC0705305)。
文摘In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine room.Different types of structural configuration might influence air distribution inside these devices.The unreasonable air distribution might lead each part of filtration or purification media to operating at largely different air flow rates.Based on a computational fluid dynamics(CFD)model,this study explores the influence of different outlet positions and different upper heights on the flow field inside chamber.The porous medium model is employed to simulate the air flow in porous media.The changing structural configurations include three positioning cases of the outlet opening and eight height cases of the upper chamber.The root mean square is defined as the non-uniformity coefficient to evaluate the uniformity of air flow distribution.The results show that the farther distance between inlet and outlet openings will bring more uniform air distribution,and the increasing height of upper chamber totally trends to exhibit more uniform air distribution.
文摘The highly efficient KQ series Kangquan brand water mineralization and purification devices for faucets, produced by the Tianjin Kangquan Purification Equipment Factory, enables people to obtain pure mineralized water from their taps. The products combine the strong points
基金supported by the National Natural Science Foundation of China(No.22106105)the Innovation Program of Shanghai Municipal Education Commission(No.2019–01–07–00-E00015)+4 种基金the Shanghai Scientific and Technological Innovation Project(Nos.21DZ1206300 and 19JC1410402)the Scientific and Technological Innovation Team for Green Catalysis and Energy Material in Yunnan Institutions of Higher Learning,General Project of Yunnan Province Science and Technology Department(No.202101BA070001–050)the Central Guidance on Local Science and Technology Development Fund of Shanghai(No.YDZX20213100003002)the Science and Technology Commission of Shanghai Municipality(No.20060502200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,and Shanghai Sailing Program(No.20YF1432200)。
文摘Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater.Despite much effort made into photothermal materials,there is an urgent need to design a rapidly synthesized photothermal evaporator for the comprehensive purification of complex seawater.Therefore,we report on all-in-one FeOx-rGO photothermal sponges synthesized via solid-phase microwave thermal shock.The narrow band gap of the semiconductor material Fe_(3)O_(4) greatly reduces the recombination of electron-hole pairs,enhancing non-radiative relaxation light absorption.The abundantπorbitals in rGO promote electron excitation and thermal vibration between the lattices.Control of the surface hydrophilicity and hydrophobicity promotes salt resistance while simultaneously achieving the purification of various complex polluted waters.The optimized GFM-3 sponge exhibitedan enhanced photothermal conversion rate of 97.3% and a water evaporation rate of 2.04 kg/(m^(2)·hr),showing promising synergistic water purification properties.These findings provide a highly efficient photothermal sponge for practical applicationsof seawater desalination and purification,as well as develop a super-rapid processing methodology for evaporation devices.