Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the...Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.展开更多
The rheological behavior of a soft interlayer is critical to understanding slope stability, which is closely related to the water content of the soft interlayer. This study used the soft interlayer of the Permian Maok...The rheological behavior of a soft interlayer is critical to understanding slope stability, which is closely related to the water content of the soft interlayer. This study used the soft interlayer of the Permian Maokou Formation in Southwest China as an example to perform ring shear creep tests with different water content amounts. The effect of water content on the creep properties of the soft interlayer was analyzed, and a new shear rheological model was established. This research produced several findings. First, the ring shear creep deformation of the soft interlayer samples varied with the water content and the maximum instantaneous shear strain increment occurred near the saturated water content. As the water content increased, the cumulative creep increment of the samples increased. Second, the water content significantly affected the long-term strength of the soft interlayer, which decreased with the increase of water content, exhibiting a negative linear correlation. Third, a constitutive equation for the new rheological model was derived, and through fitting of the ring shear creep test data, the validity and applicability of the constitutive equation were proven. This study has developed an important foundation for studying the long-term deformation characteristics of a soft interlayer with varying water content.展开更多
Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogra...Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy.展开更多
Based on biaxial shear creep tests conducted on rock samples with different water contents, we present the results of our study on the regularities of electromagnetic and acoustic emission during the process of creep ...Based on biaxial shear creep tests conducted on rock samples with different water contents, we present the results of our study on the regularities of electromagnetic and acoustic emission during the process of creep experiments in which we have analyzed the contribution of water to the occurrence of electromagnetic radiation. The result shows that in the creep-fracturing course of rock samples, when the water content increases, the initial frequency and amplitude of electromagnetic and acoustic emission also increases, but at a decreasing growth rate caused by loading stress. This can be used as a criterion for the long-term stability of rock masses under conditions of repeated inundation and discharge of water.展开更多
An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superhe...An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superheat was poured on the surface of an inclined copper plate(set at 45°inclined angle)while it was vibrated at a frequency of 40 Hz and an amplitude of 400μm.After travelling the length of 40 cm on the slope,the resultant semisolid alloy was cast into a steel mold.For the purpose of comparison,reference composite samples were made by gravity casting(GC)and conventionally still cooling slope casting(CS)methods using the same alloy under identical conditions.The samples were hot extruded at 500°C.It was concluded that the size of Mg2Si particles was decreased by about 50%and 70%for the CS and VCS produced samples respectively when compared to that of the GC produced sample.Despite of their higher porosity contents,both the as-cast and hot-extruded VCS processed samples exhibited higher hardness,shear yield stress(SYS)and ultimate shear strength(USS)values as compared with their GC produced counterparts.These results were attributed to the refined and modified microstructure obtained via this newly developed technique.展开更多
Columnar jointed basalt(CJB) widely distributes in the dam site of the Baihetan Hydropower Station.The columnar joint structure and fracture development of CJB have significant influence on the mechanical properties o...Columnar jointed basalt(CJB) widely distributes in the dam site of the Baihetan Hydropower Station.The columnar joint structure and fracture development of CJB have significant influence on the mechanical properties of rock mass,and the mechanical properties of CJB are of great significance to the Baihetan Hydropower Project.Therefore,in-situ direct shear tests were carried out on ten test adit at different locations in the dam site area to study the shear behavior of CJB.In this study,21 sets of in-situ direct shear tests were conducted for rock types of type Ⅱ_(2),type Ⅲ_(1)and type Ⅲ_(2),with horizontal and vertical shear planes and two different specimen sizes of CJB.Shear strength parameters of CJB were obtained by linear fitting of in-situ direct shear test results based on the Mohr-Coulomb strength criterion.The results indicate that the shear strength parameters of CJB with horizontal shear plane increase as the increase of rock type grade.The shear strength parameters of CJB show obvious anisotropy and the friction coefficient of the horizontal shear plane is greater than the vertical shear plane.The friction coefficient in the horizontal direction of the shear plane is 1.27 times that in the vertical direction of the shear plane.With the increase of rock type grade,the difference of friction coefficient becomes larger.However,the cohesion changes little whether the shear plane is horizontal or vertical.In addition,the size effect of CJB in this area is significant.The shear strength parameters of large size(100 cm × 100 cm) specimens are lower than those of regular size(50 cm × 50 cm) specimens.The reduction of cohesion is greater than that of the friction coefficient.For rock type Ⅲ_(2),the cohesion of large-size specimens is 0.637 of the regular-size specimens.The reduction percentage of the friction coefficient for type Ⅲ_(2)is 1.66 times that of type Ⅲ_(1).The reduction percentage of the cohesion for type Ⅲ_(2)is 1.27 times that of type Ⅲ_(1).The size effect decreases with the increase of rock type grade.The research results of this study can provide an important basis for the selection of rock mechanics parameters in the dam site area of Baihetan Hydropower Station and the stability analysis of the dam foundation and rocky slopes.展开更多
基金Project(51274251)supported by the National Natural Science Foundation of China
文摘Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.
基金supported by the National Natural Science Foundation of China(Grant No.41521001)the Natural Science Foundation of Hubei Province(Grant No.2018CFB385)
文摘The rheological behavior of a soft interlayer is critical to understanding slope stability, which is closely related to the water content of the soft interlayer. This study used the soft interlayer of the Permian Maokou Formation in Southwest China as an example to perform ring shear creep tests with different water content amounts. The effect of water content on the creep properties of the soft interlayer was analyzed, and a new shear rheological model was established. This research produced several findings. First, the ring shear creep deformation of the soft interlayer samples varied with the water content and the maximum instantaneous shear strain increment occurred near the saturated water content. As the water content increased, the cumulative creep increment of the samples increased. Second, the water content significantly affected the long-term strength of the soft interlayer, which decreased with the increase of water content, exhibiting a negative linear correlation. Third, a constitutive equation for the new rheological model was derived, and through fitting of the ring shear creep test data, the validity and applicability of the constitutive equation were proven. This study has developed an important foundation for studying the long-term deformation characteristics of a soft interlayer with varying water content.
基金the support of the National Natural Science Foundation of China (Grant Nos. 41472272, 41102194)the Key Deployment Project of the Chinese Academy of Sciences (KZZD-EW-05-01)the Science Foundation for Excellent Youth Scholars of Sichuan University (2013SCU04A07)
文摘Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy.
基金Projects 50674083 supported by the National Natural Science Foundation of China 50474063 by the Science & Technology Foundation of Ministry of Education
文摘Based on biaxial shear creep tests conducted on rock samples with different water contents, we present the results of our study on the regularities of electromagnetic and acoustic emission during the process of creep experiments in which we have analyzed the contribution of water to the occurrence of electromagnetic radiation. The result shows that in the creep-fracturing course of rock samples, when the water content increases, the initial frequency and amplitude of electromagnetic and acoustic emission also increases, but at a decreasing growth rate caused by loading stress. This can be used as a criterion for the long-term stability of rock masses under conditions of repeated inundation and discharge of water.
文摘An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superheat was poured on the surface of an inclined copper plate(set at 45°inclined angle)while it was vibrated at a frequency of 40 Hz and an amplitude of 400μm.After travelling the length of 40 cm on the slope,the resultant semisolid alloy was cast into a steel mold.For the purpose of comparison,reference composite samples were made by gravity casting(GC)and conventionally still cooling slope casting(CS)methods using the same alloy under identical conditions.The samples were hot extruded at 500°C.It was concluded that the size of Mg2Si particles was decreased by about 50%and 70%for the CS and VCS produced samples respectively when compared to that of the GC produced sample.Despite of their higher porosity contents,both the as-cast and hot-extruded VCS processed samples exhibited higher hardness,shear yield stress(SYS)and ultimate shear strength(USS)values as compared with their GC produced counterparts.These results were attributed to the refined and modified microstructure obtained via this newly developed technique.
基金supported by the National Key Research and Development Program of China (No.2017YFC1501302)the National Natural Science Foundation of China (No.41630643)+1 种基金the Fundamental Research Funds for the Central Universities (No.CUGCJ1701)the Scientific research project of China Three Gorges Corporation Ltd。
文摘Columnar jointed basalt(CJB) widely distributes in the dam site of the Baihetan Hydropower Station.The columnar joint structure and fracture development of CJB have significant influence on the mechanical properties of rock mass,and the mechanical properties of CJB are of great significance to the Baihetan Hydropower Project.Therefore,in-situ direct shear tests were carried out on ten test adit at different locations in the dam site area to study the shear behavior of CJB.In this study,21 sets of in-situ direct shear tests were conducted for rock types of type Ⅱ_(2),type Ⅲ_(1)and type Ⅲ_(2),with horizontal and vertical shear planes and two different specimen sizes of CJB.Shear strength parameters of CJB were obtained by linear fitting of in-situ direct shear test results based on the Mohr-Coulomb strength criterion.The results indicate that the shear strength parameters of CJB with horizontal shear plane increase as the increase of rock type grade.The shear strength parameters of CJB show obvious anisotropy and the friction coefficient of the horizontal shear plane is greater than the vertical shear plane.The friction coefficient in the horizontal direction of the shear plane is 1.27 times that in the vertical direction of the shear plane.With the increase of rock type grade,the difference of friction coefficient becomes larger.However,the cohesion changes little whether the shear plane is horizontal or vertical.In addition,the size effect of CJB in this area is significant.The shear strength parameters of large size(100 cm × 100 cm) specimens are lower than those of regular size(50 cm × 50 cm) specimens.The reduction of cohesion is greater than that of the friction coefficient.For rock type Ⅲ_(2),the cohesion of large-size specimens is 0.637 of the regular-size specimens.The reduction percentage of the friction coefficient for type Ⅲ_(2)is 1.66 times that of type Ⅲ_(1).The reduction percentage of the cohesion for type Ⅲ_(2)is 1.27 times that of type Ⅲ_(1).The size effect decreases with the increase of rock type grade.The research results of this study can provide an important basis for the selection of rock mechanics parameters in the dam site area of Baihetan Hydropower Station and the stability analysis of the dam foundation and rocky slopes.