The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure pres...Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure preserved environment on the mechanical difference of sandstone,four tests are numerically modeled by COMSOL:conventional triaxial test,conventional pore pressure test,in-situ stress restoration and reconstruction test,and in-situ pore pressure-preserved test(not yet realized in the laboratory).The in-situ stress restoration parameter is introduced to characterize the recovery effect of in-situ stress on elastic modulus and heterogeneous distribution of sandstone at different depths.A random function and nonuniform pore pressure coefficient are employed to describe the non-uniform distribution of pore pressure in the in-situ environment.Numerical results are compared with existing experimental data to validate the models and calibrate the numerical parameters.By extracting mechanical parameters from numerical cores,the stress-strain curves of the four tests under different depths,in-situ stress and pore pressure are compared.The influence of non-uniform pore pressure coefficient and depth on the peak strength of sandstone is analyzed.The results show a strong linear relationship between the in-situ stress restoration parameter and depth,effectively characterizing the enhanced effect of stress restoration and reconstruction methods on the elastic modulus of conventional cores at different depths.The in-situ pore pressurepreserved test exhibits lower peak stress and peak strain compared to the other three tests,and sandstone subjected to non-uniform pore pressure is more prone to plastic damage and failure.Moreover,the influence of non-uniform pore pressure on peak strength gradually diminished with increasing depth.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
Background: Chronic stress is a emotional challenge. Constant pressure presents a serious risk of damage to mental and physical health and hence is associated with increased incidence of various diseases. The ability ...Background: Chronic stress is a emotional challenge. Constant pressure presents a serious risk of damage to mental and physical health and hence is associated with increased incidence of various diseases. The ability to cope with chronic stress may be a function of psychological resilience including intellectual capacities, but more so of external factors such as life experience and education. Adolescents are more vulnerable to chronic stress than adults. The measures introduced during the COVID-19 pandemic brought up major societal problems. As both children and adolescents lost their life anchors, the prevalence of stress in adolescents increased from 20% to 45%. Chronic psychological stress can impede the normal development of schoolchildren. It may cause anxiety, social withdrawal, interpersonal conflicts and aggression. This applies particularly to those in puberty, with the adolescent already facing unstable social bonds and elevated fear about the future. It is likely that the puberty cohort accounts for the dramatic increase in the prevalence of stress. Since it impacts public health, chronic stress among school-age children is increasingly taking on a socio-political dimension. Non-clinical stress intervention studies can investigate how to achieve stress reduction in school children. Methods: In a small pilot study, we analysed the effects of a training program with four different standard interventions, i.e. mindfulness training, progressive muscle reflection, autogenic training, and sound meditation. We obtained baseline scores of 10 stress-indicators, and re-tested after the interventions were performed. Results: The four applied interventions resulted in a reduction of 8 (out of 10) stress-indicators, such as “feeling stressed” or stress related symptoms (headaches, dizziness, sweating). This positive impact of the interventions significantly reduced “Fears about the future” (p Discussion: School children recognise the positive potential of stress reducing training or interventions. Our results provide evidence in support of integrating the training of relaxation techniques in the school curriculum. We propose that a larger study be undertaken to determine which methods would be most effective.展开更多
Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between ...Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg; and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (HzO2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-C1-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+ 150 mEq kg^-1 DM, CON), high DCAD (+300 mEq kg^-1 DM, HD), low DCAD (0 mEq kg^-1 DM, LD) and negative DCAD (-150 mEq kg^-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P〈0.0001) with reduced DCAD and there was a strong association between DCAD and urine pH (R2=0.793, P〈0.0001). Compared with CON and HD feeding of LD and ND resulted in greater (P〈0.05) plasma Ca concentration. Plasma P level was increased (P〈0.05) when anionic salts were supplemented. The DCAD alteration did not affected (P〉0.05) plasma Mg level. There was no significant (P〉0.05) difference in plasma GSH-Px activity and H202, but anionic salts supplementation in LD and ND significantly increased (P〈0.05) plasma T-SOD activity and tended to reduce MDA (P〈0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.展开更多
Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the t...Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model.展开更多
In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on ...In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.展开更多
Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plottin...Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plotting of the viscosity vs shear strain shows a sigmoidal shape, which Is also observed in experimental results. The normal stress difference is plotted vs shear strain, which has not been reported in the literatures till now.展开更多
Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational s...Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational speed in numerical simulation of casting thermal stress based on FDM, one for handling of nonconstant material properties and the other for dealing with the various coefficients in discretization equations. The use of the two techniques has been discussed and an application in wave-guide casting is given. The results show that the computational speed is almost tripled and the computer storage needed is reduced nearly half compared with those of the original method without the new technologies. The stress results for the casting domain obtained by both methods that set the temperature steps to 0.1 ℃ and 10 ℃, respectively are nearly the same and in good agreement with actual casting situation. It can be concluded that both handling the material properties as an assumption of stepwise profile and eliminating the repeated calculation are reliable and effective to improve computational speed, and applicable in heat transfer and fluid flow simulation.展开更多
Stress adaptation is fundamental for health, and the hypothalamic-pituitary-adrenal axis (HPA) is one of its main mechanisms. Considerable data indicate that arginine vasopressin (AVP) related disturbances of stress a...Stress adaptation is fundamental for health, and the hypothalamic-pituitary-adrenal axis (HPA) is one of its main mechanisms. Considerable data indicate that arginine vasopressin (AVP) related disturbances of stress adaptation can occur with aging. However, most studies of such kind have been performed on rodents, give contradictory results and fail to consider individual characteristics of the animals. The purpose of this study was to investigate individual HPA responsiveness to acute stress and its vasopressinergic regulation in old female rhesus monkeys that differ in their behavioral responses to stress. Animals with depression-like or anxiety-like behavior (DAB) responded with higher plasma levels of ACTH and AVP, lower levels of corticosteroids and higher cortisol/DHEAS molar ratios to restraint stress and to insulin-induced hypoglycemia compared with animals with healthy adaptive behavior. AVP and ACTH dynamics were closely correlated in most animals. AVP treatment produced differences in HPA responses similar to those produced by the stressors. The ACTH response to hypoglycemic stress in the DAB animal with highest HPA responsiveness was dramatically reduced by prior administration of a V1b receptor antagonist. These results suggest that the dysfunctions of HPA observed in old animals with DAB are caused by increased tone of the vasopressinergic system in regulation of HPA stress reactivity.展开更多
In order to analyze the microscopic theory of viscous-elastic fluid flooding residual oil, the flow equation of polymer solution in the micro pore can be derived by selecting upper-convected Maxwell constitutive equat...In order to analyze the microscopic theory of viscous-elastic fluid flooding residual oil, the flow equation of polymer solution in the micro pore can be derived by selecting upper-convected Maxwell constitutive equation, continuity equation and motion equation. Then, the flow velocity field and stress field can be calculated under the boundary condition, and with the theory of stress tensor, the horizontal stress difference of polymer solution acting on the residual oil can be calculated. The results show that the greater the elasticity of viscous-elastic fluid is, the wider the flow channel is, the greater the horizontal stress difference is. The force acting on residual oil by viscous-elastic fluid can be increased by increasing the concentration of the polymer solution.展开更多
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake...The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.展开更多
In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order f...In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).展开更多
BACKGROUND: Prenatal stress has been shown to inhibit cell proliferation in the dentate gyrus and hippocampus, reduce hippocampal volume, and cause neuronal loss and oxidative damage in the hippocampus of offspring r...BACKGROUND: Prenatal stress has been shown to inhibit cell proliferation in the dentate gyrus and hippocampus, reduce hippocampal volume, and cause neuronal loss and oxidative damage in the hippocampus of offspring rats, but the sexual difference of the effects on offsprings is seldom referred to. OBJECTIVE: To observe the effect of prenatal stress to adult pregnant rats on expression of extracellular signal-regulated kinases (ERK) in hippocampus of the offspring rats of different genders. DESIGN : A randomized and control animal experiment.SETTING: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University. MATERIALS : The experiments were carried out in the Key Laboratory of Environment and Gene Related Diseases (Xi'an Jiaotong University), Ministry of Education between October 2005 and March 2006. Fifteen female and five male adult Sprague-Dawley rats were adopted. Female rats weighing 230-250 g and male rats weighing 280-350 g were used. METHODS: The virgin female rats were placed overnight with adult male rats (3:1) for mating. A total of twelve pregnant rats were randomly assigned to prenatal stress group (PNS group, n=6) and control group (n=6). The pregnant rats of the PNS group were exposed to restraint stress on days 14-20 of pregnancy three times a day, 45 minutes for each time . The restraint device was a transparent plastic tube (6.8 cm in diameter) with air holes for breathing and closed end. The length could be adjusted to accommodate the size of the animals. To prevent habituation of animals to the daily procedure, restraint periods were randomly shifted within certain time periods (8:00-11:00, 11:00-14:00, and 16:00-19:00). After birth, offsprings of all groups were culled to 8-10 litters in each group and housed in the same animal room, and kept together with their biologic mothers. The pregnant rats of the control group were left undisturbed. On day 21, after all the offspring were weaned, male and female pups were separated and housed four in each cage respectively until test at 30 days of age. At the end of postnatal day 30, one male and female offspring rats from the same dam were selected with a random choice and a total of 24 animals from 12 different dams were used. The experimental rats were sacrificed by decapitation under anesthesia. Bilateral hippocampal tissues were isolated and homogenized in cold condition. Alkaline carbonate buffer (BCA) method was used to detect the concentration of extracellular signal-regulated kinases (ERK), then mixed with loading buffer, the constant voltage was 100 V. Finally, BCIP/NBT staining and electrDphoresis were performed, the absorbance (A) value for the bands was detected with the Bandscan analytical software, and the expression of ERK in hippocampus of offspring rats of different genders in each group was quantitatively analyzed. MAIN OUTCOME MEASURES: The level of ERK expression in hippocampus of offspring rats of different genders in each group was observed.RESULTS: All the 24 offspring rats were involved in the analysis of results. ① The staining results of ERP activity in the extract of brain tissue detected with Western blotting technique and specific antibody analysis showed that the ERP in hippocampus of offspring rats had two subtypes of ERK-1 and ERK-2, and the latter was the main type.② Standardized by the average A value in the control group, the quantitative data of the general A value of total ERK showed that the expression of ERK-2 in hippocampus of female offspring rats was obviously higher in the PNS group than in the control group (A value: 126±6.76,100±4.89,P〈 0.01). ③The expression of ERK-2 had no obvious difference between the female and male offspring rats in the control group.④ The expression of ERK-2 in hippocampus of male offspring rats was a little higher in the PNS group than in the control group (A value: 104±6.27,102±5.48,P 〉 0.05). CONCLUSION : PNS significantly affects the increase of ERK expression in hippocampus of female offspring rats, but has no obvious influence on that of male ones.展开更多
[Objective] The aim was to study the effects of short-term high temperature stress on the photosynthesis of potato in different growth stages. [Method] Choosing powder potato named Longshu No.3 widely cultivated in Ni...[Objective] The aim was to study the effects of short-term high temperature stress on the photosynthesis of potato in different growth stages. [Method] Choosing powder potato named Longshu No.3 widely cultivated in Ningxia as test material,the changes of stomata conductance (Gs),transpiration rate (Tr) and CO2 concentration difference between internal and external leaf chamber,net photosynthetic rate (Pn) and photosynthetic water use efficiency (WUE) in different growth stages under short-term high temperature were analyzed. [Result] During seedling stage,the hysteretic nature of net photosynthetic rate and CO2 concentration difference between internal and external leaf chamber of potato could be found under high temperature stress,while the change trends of stomata conductance and transpiration rate under high temperature stress were consistent to that at normal temperature,but stomata conductance and transpiration rate were higher than those at normal temperature,and CO2 concentration difference between internal and external leaf chamber affected net photosynthetic rate most obviously. During branching stage,the change trends of net photosynthetic rate,CO2 concentration difference between internal and external leaf chamber,stomata conductance and transpiration rate under high temperature stress and normal temperature were similar,but they changed abruptly and reached peak value at noon under high temperature stress,while there existed consistent variation of water use efficiency under high temperature stress and at normal temperature,and CO2 concentration difference between internal and external leaf chamber also affected net photosynthetic rate most greatly,next came transpiration rate. [Conclusion] High temperature stress affected the photosynthesis of potato in different growth stages,and it was more obvious during branching stage than seedling stage,while CO2 concentration difference between internal and external leaf chamber had the most important influence on net photosynthetic rate.展开更多
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ...In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.展开更多
Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the...Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.展开更多
Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at v...Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation.展开更多
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
基金supported by the National Natural Science Foundation of China(Nos.51827901 and 52121003)the 111 Project(No.B14006)+1 种基金the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03)the Fundamental Research Funds for the Central Universities(No.2022YJSNY13).
文摘Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure preserved environment on the mechanical difference of sandstone,four tests are numerically modeled by COMSOL:conventional triaxial test,conventional pore pressure test,in-situ stress restoration and reconstruction test,and in-situ pore pressure-preserved test(not yet realized in the laboratory).The in-situ stress restoration parameter is introduced to characterize the recovery effect of in-situ stress on elastic modulus and heterogeneous distribution of sandstone at different depths.A random function and nonuniform pore pressure coefficient are employed to describe the non-uniform distribution of pore pressure in the in-situ environment.Numerical results are compared with existing experimental data to validate the models and calibrate the numerical parameters.By extracting mechanical parameters from numerical cores,the stress-strain curves of the four tests under different depths,in-situ stress and pore pressure are compared.The influence of non-uniform pore pressure coefficient and depth on the peak strength of sandstone is analyzed.The results show a strong linear relationship between the in-situ stress restoration parameter and depth,effectively characterizing the enhanced effect of stress restoration and reconstruction methods on the elastic modulus of conventional cores at different depths.The in-situ pore pressurepreserved test exhibits lower peak stress and peak strain compared to the other three tests,and sandstone subjected to non-uniform pore pressure is more prone to plastic damage and failure.Moreover,the influence of non-uniform pore pressure on peak strength gradually diminished with increasing depth.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
文摘Background: Chronic stress is a emotional challenge. Constant pressure presents a serious risk of damage to mental and physical health and hence is associated with increased incidence of various diseases. The ability to cope with chronic stress may be a function of psychological resilience including intellectual capacities, but more so of external factors such as life experience and education. Adolescents are more vulnerable to chronic stress than adults. The measures introduced during the COVID-19 pandemic brought up major societal problems. As both children and adolescents lost their life anchors, the prevalence of stress in adolescents increased from 20% to 45%. Chronic psychological stress can impede the normal development of schoolchildren. It may cause anxiety, social withdrawal, interpersonal conflicts and aggression. This applies particularly to those in puberty, with the adolescent already facing unstable social bonds and elevated fear about the future. It is likely that the puberty cohort accounts for the dramatic increase in the prevalence of stress. Since it impacts public health, chronic stress among school-age children is increasingly taking on a socio-political dimension. Non-clinical stress intervention studies can investigate how to achieve stress reduction in school children. Methods: In a small pilot study, we analysed the effects of a training program with four different standard interventions, i.e. mindfulness training, progressive muscle reflection, autogenic training, and sound meditation. We obtained baseline scores of 10 stress-indicators, and re-tested after the interventions were performed. Results: The four applied interventions resulted in a reduction of 8 (out of 10) stress-indicators, such as “feeling stressed” or stress related symptoms (headaches, dizziness, sweating). This positive impact of the interventions significantly reduced “Fears about the future” (p Discussion: School children recognise the positive potential of stress reducing training or interventions. Our results provide evidence in support of integrating the training of relaxation techniques in the school curriculum. We propose that a larger study be undertaken to determine which methods would be most effective.
基金funded by the National Natural Science Foundation of China (30901038, 31160468)the State Key Laboratory of Animal Nutrition, Ministry of Science and Technology, China (2004DA125184F1115)the Key Technology Research and Development Program of Guizhou Province, China ([2009]3085)
文摘Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg; and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (HzO2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-C1-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+ 150 mEq kg^-1 DM, CON), high DCAD (+300 mEq kg^-1 DM, HD), low DCAD (0 mEq kg^-1 DM, LD) and negative DCAD (-150 mEq kg^-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P〈0.0001) with reduced DCAD and there was a strong association between DCAD and urine pH (R2=0.793, P〈0.0001). Compared with CON and HD feeding of LD and ND resulted in greater (P〈0.05) plasma Ca concentration. Plasma P level was increased (P〈0.05) when anionic salts were supplemented. The DCAD alteration did not affected (P〉0.05) plasma Mg level. There was no significant (P〉0.05) difference in plasma GSH-Px activity and H202, but anionic salts supplementation in LD and ND significantly increased (P〈0.05) plasma T-SOD activity and tended to reduce MDA (P〈0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.
基金supported by the National Natural Science Foundation of China (No.50805056)New Century Excellent Talents in University (No.NCET-09-0396)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education (2009)
文摘Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model.
基金sponsored by the National Natural Science Foundation of China(42002181)projecta public bidding project of 2020 Shanxi Provincial Science and Technology Program(20201101002-03).
文摘In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.
文摘Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plotting of the viscosity vs shear strain shows a sigmoidal shape, which Is also observed in experimental results. The normal stress difference is plotted vs shear strain, which has not been reported in the literatures till now.
基金supported by National Natural Science Foundation of China (Grant Nos. 50827102 and 50931004)National Basic Research Program of China (Grant No. 2010CB631202 and No. 2006CB605202)High Technology Research and Development Program of China (Grant No. 2007AA03Z552)
文摘Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational speed in numerical simulation of casting thermal stress based on FDM, one for handling of nonconstant material properties and the other for dealing with the various coefficients in discretization equations. The use of the two techniques has been discussed and an application in wave-guide casting is given. The results show that the computational speed is almost tripled and the computer storage needed is reduced nearly half compared with those of the original method without the new technologies. The stress results for the casting domain obtained by both methods that set the temperature steps to 0.1 ℃ and 10 ℃, respectively are nearly the same and in good agreement with actual casting situation. It can be concluded that both handling the material properties as an assumption of stepwise profile and eliminating the repeated calculation are reliable and effective to improve computational speed, and applicable in heat transfer and fluid flow simulation.
文摘Stress adaptation is fundamental for health, and the hypothalamic-pituitary-adrenal axis (HPA) is one of its main mechanisms. Considerable data indicate that arginine vasopressin (AVP) related disturbances of stress adaptation can occur with aging. However, most studies of such kind have been performed on rodents, give contradictory results and fail to consider individual characteristics of the animals. The purpose of this study was to investigate individual HPA responsiveness to acute stress and its vasopressinergic regulation in old female rhesus monkeys that differ in their behavioral responses to stress. Animals with depression-like or anxiety-like behavior (DAB) responded with higher plasma levels of ACTH and AVP, lower levels of corticosteroids and higher cortisol/DHEAS molar ratios to restraint stress and to insulin-induced hypoglycemia compared with animals with healthy adaptive behavior. AVP and ACTH dynamics were closely correlated in most animals. AVP treatment produced differences in HPA responses similar to those produced by the stressors. The ACTH response to hypoglycemic stress in the DAB animal with highest HPA responsiveness was dramatically reduced by prior administration of a V1b receptor antagonist. These results suggest that the dysfunctions of HPA observed in old animals with DAB are caused by increased tone of the vasopressinergic system in regulation of HPA stress reactivity.
文摘In order to analyze the microscopic theory of viscous-elastic fluid flooding residual oil, the flow equation of polymer solution in the micro pore can be derived by selecting upper-convected Maxwell constitutive equation, continuity equation and motion equation. Then, the flow velocity field and stress field can be calculated under the boundary condition, and with the theory of stress tensor, the horizontal stress difference of polymer solution acting on the residual oil can be calculated. The results show that the greater the elasticity of viscous-elastic fluid is, the wider the flow channel is, the greater the horizontal stress difference is. The force acting on residual oil by viscous-elastic fluid can be increased by increasing the concentration of the polymer solution.
基金supported by the National Natural Science Foundation of China(Grant Nos.42377182,52079133 and 41931295).
文摘The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.
文摘In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).
基金the National Natural Science Foundation of China, No. 30270445
文摘BACKGROUND: Prenatal stress has been shown to inhibit cell proliferation in the dentate gyrus and hippocampus, reduce hippocampal volume, and cause neuronal loss and oxidative damage in the hippocampus of offspring rats, but the sexual difference of the effects on offsprings is seldom referred to. OBJECTIVE: To observe the effect of prenatal stress to adult pregnant rats on expression of extracellular signal-regulated kinases (ERK) in hippocampus of the offspring rats of different genders. DESIGN : A randomized and control animal experiment.SETTING: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University. MATERIALS : The experiments were carried out in the Key Laboratory of Environment and Gene Related Diseases (Xi'an Jiaotong University), Ministry of Education between October 2005 and March 2006. Fifteen female and five male adult Sprague-Dawley rats were adopted. Female rats weighing 230-250 g and male rats weighing 280-350 g were used. METHODS: The virgin female rats were placed overnight with adult male rats (3:1) for mating. A total of twelve pregnant rats were randomly assigned to prenatal stress group (PNS group, n=6) and control group (n=6). The pregnant rats of the PNS group were exposed to restraint stress on days 14-20 of pregnancy three times a day, 45 minutes for each time . The restraint device was a transparent plastic tube (6.8 cm in diameter) with air holes for breathing and closed end. The length could be adjusted to accommodate the size of the animals. To prevent habituation of animals to the daily procedure, restraint periods were randomly shifted within certain time periods (8:00-11:00, 11:00-14:00, and 16:00-19:00). After birth, offsprings of all groups were culled to 8-10 litters in each group and housed in the same animal room, and kept together with their biologic mothers. The pregnant rats of the control group were left undisturbed. On day 21, after all the offspring were weaned, male and female pups were separated and housed four in each cage respectively until test at 30 days of age. At the end of postnatal day 30, one male and female offspring rats from the same dam were selected with a random choice and a total of 24 animals from 12 different dams were used. The experimental rats were sacrificed by decapitation under anesthesia. Bilateral hippocampal tissues were isolated and homogenized in cold condition. Alkaline carbonate buffer (BCA) method was used to detect the concentration of extracellular signal-regulated kinases (ERK), then mixed with loading buffer, the constant voltage was 100 V. Finally, BCIP/NBT staining and electrDphoresis were performed, the absorbance (A) value for the bands was detected with the Bandscan analytical software, and the expression of ERK in hippocampus of offspring rats of different genders in each group was quantitatively analyzed. MAIN OUTCOME MEASURES: The level of ERK expression in hippocampus of offspring rats of different genders in each group was observed.RESULTS: All the 24 offspring rats were involved in the analysis of results. ① The staining results of ERP activity in the extract of brain tissue detected with Western blotting technique and specific antibody analysis showed that the ERP in hippocampus of offspring rats had two subtypes of ERK-1 and ERK-2, and the latter was the main type.② Standardized by the average A value in the control group, the quantitative data of the general A value of total ERK showed that the expression of ERK-2 in hippocampus of female offspring rats was obviously higher in the PNS group than in the control group (A value: 126±6.76,100±4.89,P〈 0.01). ③The expression of ERK-2 had no obvious difference between the female and male offspring rats in the control group.④ The expression of ERK-2 in hippocampus of male offspring rats was a little higher in the PNS group than in the control group (A value: 104±6.27,102±5.48,P 〉 0.05). CONCLUSION : PNS significantly affects the increase of ERK expression in hippocampus of female offspring rats, but has no obvious influence on that of male ones.
基金Supported by National Natural Science Foundation of China(40765003)National Key Technology R &D Program in the 11th Five Year Plan of China (2007BAC03A02)~~
文摘[Objective] The aim was to study the effects of short-term high temperature stress on the photosynthesis of potato in different growth stages. [Method] Choosing powder potato named Longshu No.3 widely cultivated in Ningxia as test material,the changes of stomata conductance (Gs),transpiration rate (Tr) and CO2 concentration difference between internal and external leaf chamber,net photosynthetic rate (Pn) and photosynthetic water use efficiency (WUE) in different growth stages under short-term high temperature were analyzed. [Result] During seedling stage,the hysteretic nature of net photosynthetic rate and CO2 concentration difference between internal and external leaf chamber of potato could be found under high temperature stress,while the change trends of stomata conductance and transpiration rate under high temperature stress were consistent to that at normal temperature,but stomata conductance and transpiration rate were higher than those at normal temperature,and CO2 concentration difference between internal and external leaf chamber affected net photosynthetic rate most obviously. During branching stage,the change trends of net photosynthetic rate,CO2 concentration difference between internal and external leaf chamber,stomata conductance and transpiration rate under high temperature stress and normal temperature were similar,but they changed abruptly and reached peak value at noon under high temperature stress,while there existed consistent variation of water use efficiency under high temperature stress and at normal temperature,and CO2 concentration difference between internal and external leaf chamber also affected net photosynthetic rate most greatly,next came transpiration rate. [Conclusion] High temperature stress affected the photosynthesis of potato in different growth stages,and it was more obvious during branching stage than seedling stage,while CO2 concentration difference between internal and external leaf chamber had the most important influence on net photosynthetic rate.
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProject(51974360)supported by the National Natural Science Foundation of ChinaProject(2018JJ3656)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.
文摘Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.
基金provided by the Fundamental Research Funds for the Central Universities(No.2014QNA02)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT13098)+3 种基金the National Basic Research Program of China(No.2011CB201205)the National Natural Science Foundation of China(No.51404261)the Natural Science Foundation of Jiangsu Province(No.BK20140196)China PostdoctoralScience Foundation funded project(No.2014M551057)
文摘Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation.