期刊文献+
共找到634篇文章
< 1 2 32 >
每页显示 20 50 100
Moment tensor and stress inversion solutions of acoustic emissions during compression and tensile fracturing in crystalline rocks
1
作者 Zihua Niu Bing Qiuyi Li Omid Moradian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2778-2786,共9页
We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in ... We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in the specimens introduce a complex stress field,resulting in a spatial and temporal variation of focal mechanisms.Specifically,we consider two experimental setups:(1)where the rock is loaded in compression to generate primarily shear-type fractures and(2)where the material is loaded in indirect tension to generate predominantly tensile-type fractures.In each test,we first decompose AE moment tensors into double-couple(DC)and non-DC terms and then derive unambiguous normal and slip vectors using k-means clustering and an unstructured damped stress inversion algorithm.We explore temporal and spatial distributions of DC and non-DC events at different loading levels.The majority of the DC and the tensile non-DC events cluster around the pre-cut flaws,where macro-cracks later develop.Results of stress inversion are verified against the stress field from finite element(FE)modeling.A good agreement is found between the experimentally derived and numerically simulated stress orientations.To the best of the authors’knowledge,this work presents the first case where stress inversion methodologies are validated by numerical simulations at laboratory scale and under highly heterogeneous stress distributions. 展开更多
关键词 Induced seismicity Acoustic emission(AE) Moment tensor(MT)inversion stress inversion Finite element(FE)modeling
下载PDF
Research on in situ stress inversion of deep-buried tunnel based on pressure/tension axis mechanism and geological structure
2
作者 Guanfu Chen Xiaoli Liu Danqing Song 《Deep Underground Science and Engineering》 2023年第1期61-73,共13页
The investigation of the in situ stress distribution has always been a key condition for engineering design of deep tunnels and analysis of surrounding rock stability.In this paper,a comprehensive judgment method coup... The investigation of the in situ stress distribution has always been a key condition for engineering design of deep tunnels and analysis of surrounding rock stability.In this paper,a comprehensive judgment method coupled with pressure/tension(P/T)axis mechanism and geological structure is proposed to invert the in situ stress in the Duoxiongla tunnel in Tibet.In the process of TBM tunnel excavation,3887 groups of microseismic events were collected by means of microseismic monitoring technology.By studying the temporal and spatial distribution of 3887 groups of microseismic events,42 groups of microseismic data were selected for in situ stress inversion.Then the focal mechanisms of 42 groups of microseisms were inverted.Combined with the analysis of the previous geological survey,the inversion results of the in situ stress were analyzed.According to the focal mechanism of the tunnel area,the linear in situ stress inversion method was used to invert the in situ stress in the source area.Finally,according to the PTGS(pressure/tension axis mechanism and geological structure)comprehensive judgment method proposed in this paper,the in situ stress of the tunnel microseismic region was determined.The results show that there are mainly three groups of fissures and joint surfaces in the tunnel area,and the in situ stress is dominated by the horizontrun tectonic stress;the main driving force of the rupture surface in the excavation process of Duoxiongla tunnel is the horizontal tectonic stress;the distribution of the maximum and minimum principal stress obtained by the inversion is consistent with the distribution of the P/T axis;combined with the linear in situ stress inversion method and the comprehensive judgment of PTGS,the azimuth and dip angles of the three principal stresses are finally determined as N90.71°E,4.06°,N5.35°W,3.06°,and N8.10W,85.32°,respectively.The study verifies the feasibility of microseismic inversion of in situ stress. 展开更多
关键词 deep tunnel focal mechanism geological structure microseismic monitoring stress inversion
下载PDF
In-situ stress inversion in Liard Basin, Canada, from caliper logs 被引量:1
3
作者 Hongxue Han Shunde Yin 《Petroleum》 CSCD 2020年第4期392-403,共12页
This paper proposes an integrated method of analytical calculation,artificial intelligence,and probabilistic analysis to cost-effectively determine geomechanical properties and in-situ stresses from borehole deformati... This paper proposes an integrated method of analytical calculation,artificial intelligence,and probabilistic analysis to cost-effectively determine geomechanical properties and in-situ stresses from borehole deformation via caliper logs.It's also demonstrated in this paper that the actual borehole size can not be simply taken as the bit size by default,and adjusted borehole size has to be used to find the reasonable borehole deformation.In the proposed method,an artificial neural network(ANN)is applied to map the relationship among in-situ stress,adjusted borehole size,geomechanical properties,and borehole displacements.The genetic algorithm(GA)searches for the set of unknown stresses and geomechanical properties that match the objective borehole deformation function.Probabilistic analysis is conducted after ANN-GA modeling to estimate the most possible ranges of the parameters.The hybrid method has been demonstrated by a field case study to estimate the adjusted borehole size,Young's modulus,and the two horizontal in-situ stresses using borehole deformation information reported from four-arm caliper logs of a vertical borehole in Liard Basin in Canada. 展开更多
关键词 Adjusted borehole size in-situ stress Caliper log Borehole deformation Artificial neural network Genetic algorithm Probabilistic analysis
原文传递
Numerical analysis on mechanical difference of sandstone under in-situ stress,pore pressure preserved environment at depth
4
作者 Hongwei Zhou Mingyuan Lu +5 位作者 Heping Xie Wenhao Jia Ruidong Peng Yimeng Wang Bocen Chen Pengfei Jing 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1339-1350,共12页
Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure pres... Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure preserved environment on the mechanical difference of sandstone,four tests are numerically modeled by COMSOL:conventional triaxial test,conventional pore pressure test,in-situ stress restoration and reconstruction test,and in-situ pore pressure-preserved test(not yet realized in the laboratory).The in-situ stress restoration parameter is introduced to characterize the recovery effect of in-situ stress on elastic modulus and heterogeneous distribution of sandstone at different depths.A random function and nonuniform pore pressure coefficient are employed to describe the non-uniform distribution of pore pressure in the in-situ environment.Numerical results are compared with existing experimental data to validate the models and calibrate the numerical parameters.By extracting mechanical parameters from numerical cores,the stress-strain curves of the four tests under different depths,in-situ stress and pore pressure are compared.The influence of non-uniform pore pressure coefficient and depth on the peak strength of sandstone is analyzed.The results show a strong linear relationship between the in-situ stress restoration parameter and depth,effectively characterizing the enhanced effect of stress restoration and reconstruction methods on the elastic modulus of conventional cores at different depths.The in-situ pore pressurepreserved test exhibits lower peak stress and peak strain compared to the other three tests,and sandstone subjected to non-uniform pore pressure is more prone to plastic damage and failure.Moreover,the influence of non-uniform pore pressure on peak strength gradually diminished with increasing depth. 展开更多
关键词 in-situ pore pressure-preserved ENVIRONMENT Numerical simulation approach Deep in-situ rock mechanics in-situ stress restoration and reconstruction
下载PDF
In-situ stress of coal reservoirs in the Zhengzhuang area of the southern Qinshui Basin and its effects on coalbed methane development
5
作者 Peng Zhang Ya Meng +4 位作者 Chaoying Liu Yuanling Guo Xiangbin Yan Lixue Cai Zhe Cheng 《Energy Geoscience》 2023年第2期17-27,共11页
In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on ... In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1. 展开更多
关键词 in-situ stress Coal reservoir Multi-loop hydraulic fracturing method PERMEABILITY Production capacity
下载PDF
The MT inversion for conductivity anisotropy and EDA precursor,stress field and deformationbandintheEarthsdeepcrust
6
作者 林长佑 杨长福 +1 位作者 武玉霞 陈军营 《Acta Seismologica Sinica(English Edition)》 CSCD 1996年第3期60-68,共9页
TheMTinversionforconductivityanisotropyandEDAprecursor,stresfieldanddefor┐mationbandintheEarthsdeepcrustCHAN... TheMTinversionforconductivityanisotropyandEDAprecursor,stresfieldanddefor┐mationbandintheEarthsdeepcrustCHANG-YOULIN(林长佑),C... 展开更多
关键词 MT inversion of anisotropic media EDA PRECURSOR stress FIELD deformation band.
下载PDF
Genetic algorithm-finite element method inversion of the factors determining the recent tectonic stress field of part of East Asia area
7
作者 安美建 石耀霖 李方全 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1998年第3期1-8,共8页
GeneticalgorithmfiniteelementmethodinversionofthefactorsdeterminingtherecenttectonicstresfieldofpartofEastAs... GeneticalgorithmfiniteelementmethodinversionofthefactorsdeterminingtherecenttectonicstresfieldofpartofEastAsiaareaMEIJIAN... 展开更多
关键词 GENETIC ALGORITHM FINITE ELEMENT METHOD (GA FEM) TECTONIC stress field dynamic GENETIC ALGORITHM inversion of FINITE ELEMENT METHOD
下载PDF
Elastic impedance inversion for stress indicator in weakly orthorhombic media
8
作者 Guang-Zhi Zhang Rui Yang +2 位作者 Lin Li You Zhou Huai-Zhen Chen 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2064-2080,共17页
Hydraulic fracturing is a crucial technology for improving permeability and production of shale reservoirs.The precise estimation of the stress distribution has a significant guidance for optimizing the placement of h... Hydraulic fracturing is a crucial technology for improving permeability and production of shale reservoirs.The precise estimation of the stress distribution has a significant guidance for optimizing the placement of hydraulic fracturing.Assuming that the shale gas reservoir is a weakly anisotropic medium with orthorhombic symmetry,a new stress indicator parameterized by rock mechanical parameters and fracture parameters is firstly presented to predict the differential horizontal stress ratio in shale gas reservoirs.Then,we derive a novel simplified P-to-P reflection coefficient and a logarithmic normalized elastic impedance(EI)as a function of Young’s modulus,Poisson’s ratio,Thomsen’s WA parameterδband normal excess compliance Z_(N).Next,we adopt azimuthal EI inversion in a Bayesian framework to estimate rock mechanics parameters and fracture parameters directly on a fractured shale gas field seismic data.Finally,the stress indicator is determined by utilizing four inverted parameters.Synthetic examples demonstrate that the proposed approach produces stable parameter estimates even with moderate noise,verifying the feasibility and effectiveness of the method.Test on a field data set illustrates that the inversion results can be reasonably estimated,and the stress indicator derived by the inversion accords with the geomechanics result.Compared with the previous method,the new stress indicator has a higher capability to describe stress characteristics in the shale reservoir.We conclude that this stress evaluation procedure can provide reliable guidance for well location deployment and hydraulic fracturing reformation. 展开更多
关键词 Shale reservoir stress ANISOTROPY Seismic inversion
下载PDF
Inversion of Stress Fields in the Middle Section of the Xiaojiang Fault and Its Adjacent Area 被引量:2
9
作者 Lin Xiangdong Xu Ping +2 位作者 Wu Minjie Gao Ling Wu Anxu 《Earthquake Research in China》 2011年第1期82-91,共10页
With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the dir... With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the direct wave amplitude ratio of S /P in the vertical component and their characteristics were analyzed. According to regional tectonic features of the middle section of the Xiaojiang fault and its adjacent area,the study region was partitioned into two zones with the Xiaojiang fault as the boundary,e. g. zone A and zone B (including the Xiaojiang fault). In order to research the faults stress in detail,the Xiaojiang fault zone was picked out for independent analysis. The study region was also partitioned into 1°× 1° cells with a 0. 5° step. The stress fields of zone A,B and the fault zone were inverted with the FMSI method (Gephart,1990). The results show that first, the faults are mainly of strike-slip in the middle section and its adjacent area,amounting to 81. 28%,69. 23% and 72. 97% in the A,B and fault zones,respectively. Secondly,the stress inversion also indicates that the directions of maximum principal stress σ1 in the A, B,and fault zones are approximately NNW,NWW and NWW,the stress action is mainly horizontal,and strike-slip faulting is dominant in the study area. On the other hand,the direction of the principal stress field in the central Yunnan block changed from NNW to NWW,however,in the region between the Yuanmou and Pudu River faults,the azimuth of the main compressive stress shows that the north-south slip is obvious. While the direction of the main compressive stress of the Xiaojiang fault zone is nearly NW; in the east of the Xiaojiang fault,the direction of principal compressive stress is NW to NNW in the eastern Yunnan block. 展开更多
关键词 小江断裂带 应力场反演 邻区 区域构造特征 主应力方向 中段 地震波形数据 研究区域
下载PDF
Inversion of coseismic stress-triggered fault slips using borehole strainmeter observations
10
作者 邱泽华 阚宝祥 +2 位作者 唐磊 张超凡 宋茉 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第6期643-649,共7页
Coseismic stress-triggering is becoming a new hot spot of research. Coseismic strain steps recorded by borehole strainmeters are particularly valuable in studying coseismic stress-triggered fault slips. Based on the t... Coseismic stress-triggering is becoming a new hot spot of research. Coseismic strain steps recorded by borehole strainmeters are particularly valuable in studying coseismic stress-triggered fault slips. Based on the theory of dis-location, one can invert the triggered fault slips with such data if he/she has a well understanding about the local faults. Genetic algorithm can be applied to significantly raise the efficiency of searching a best solution among all possibilities in this kind of inversion. A testifying check of the program and analyses of each parameter’s influence may further enhance the reliability of inversion results. Taking complexity of geological structure into account, the inversion results should be regarded as the predominant property or a comprehensive effect of triggered local faults’ activities. As an attempt, we inverted the assumingly active faults’ slips triggered by the MS=8.1 Kunlun Mountain earthquake over Beijing area. 展开更多
关键词 地震 地应力 应力场 遗传算法 昆仑山
下载PDF
Focal Mechanism Solutions and Stress Field Inversion of Moderately Strong Earthquakes in the Northern Tianshan Area
11
作者 Long Haiying Gao Guoying Nie Xiaohong Li Yinzhen 《Earthquake Research in China》 2008年第4期374-382,共9页
Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area,we carried out system cluster and stress field inversion analysis.The result indicates that,the focal mechanism sol... Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area,we carried out system cluster and stress field inversion analysis.The result indicates that,the focal mechanism solutions of moderately strong earthquakes are mainly dip-slip reverse faulting in the northern Tianshan area.The principal rupture planes of earthquakes are NW-oriented.It is basically consistent with the strike of earthquake structure in its adjacent area.The direction of the principal compression stress P axis is nearly NS,and its inclination angle is small;while the inclination angle of the principal extensional stress T axis is large.It shows that the regional stress field is mainly controlled by the near-NS horizontal compressive stress.The direction of the maximum principal stress shows a gradation process of NNE-NS-NW from east to west. 展开更多
关键词 天山地区 强地震 应力场反转 机械解
下载PDF
Effects of in-situ stress on the stability of a roadway excavated through a coal seam 被引量:7
12
作者 Li He Lin Baiquan +5 位作者 Hong Yidu Gao Yabin Yang Wei Liu Tong, Wang Rui Huang Zhanbo 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期917-927,共11页
Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at v... Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation. 展开更多
关键词 ROADWAY stability Numerical simulation in-situ stress stress concentration Failure DEFORMATION
下载PDF
Moment tensor inversion for focal mechanism of the Beibuwan earthquakes 被引量:2
13
作者 周荣茂 陈运泰 吴忠良 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第6期609-617,共9页
Two earthquakes of Ms=6.0 and Ms=6. 1 consecutively occurred on December 31, 1994 and January 10, 1995 in Beibuwan region, China. By using the generalized reflection-transmission coefficient matrix and the discrete sl... Two earthquakes of Ms=6.0 and Ms=6. 1 consecutively occurred on December 31, 1994 and January 10, 1995 in Beibuwan region, China. By using the generalized reflection-transmission coefficient matrix and the discrete slowness integration method in the calculation of Green’s functions, we obtained the focal mechanisms of these earthquakes using long-period waveforms of regional body waves recorded by the China Digital Seismograph Network (CDSN) by means of moment tensor inversion method in frequency domain. The results inverted indicate that the focal mechanisms of these two earthquakes were similar to each other. Their principal compressional stresses are in NW-SE direction and principal tensional stresses are in NE-SW direction. It turns out that the occurrence of the two earthquakes was controlled by the same tectonic environment related to the collision of the Philippine Plate and the Eurasian Plates. On the other hand, the results imply that the stress field in the seismogenic region has a significant change after the Ms=6.0 earthquake. It may be proposed that the occurrence of the Ms=6. 1 earthquake could be related to the stress field adjustment caused by the Ms=6.0 earthquake. 展开更多
关键词 MOMENT TENSOR inversion FOCAL mechanism Beibuwan EARTHQUAKES stress field
下载PDF
Moment tensor inversion of the November 6, 1988 MS=7.6, Lancang-Gengma, China,earthquake using long-period body-waves data 被引量:2
14
作者 许力生 吴忠良 陈运泰 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第4期379-389,共11页
Moment tensor inversion was carried out to myert the source mechanism and source time function of the Ms=7.6November 6. 1988, Lancang-Gengma. Yunnan Province, Chin4 earthquake. Waveforms of long-period bodywaves recor... Moment tensor inversion was carried out to myert the source mechanism and source time function of the Ms=7.6November 6. 1988, Lancang-Gengma. Yunnan Province, Chin4 earthquake. Waveforms of long-period bodywaves recorded by China Digital Seismograph Network (CDSN) were used in the inversion. The inverted resultshows one nodal plane of right-lateral strike-slip faulting and another of left-lateral strike-slip faulting and a simplesource time function of a duration of about 15 s and scalar seismic moment of 6.4x 102oN-N-m From the geologicaldata and tectonic settings and also from field observations and epicentral distribution of aftershocks, the nodalplane striking in the azimuth of 313° is preferred as the fault plane. The pressure axis lies almost horizontally innorth-south direction. 展开更多
关键词 MOMENT TENSOR inversion FOCAL mechanism principal stress AXIS source-time function
下载PDF
Inverse approach to determine piston profile from impact stress waveform on given non-uniform rod 被引量:1
15
作者 朱萍玉 刘德顺 +1 位作者 彭佑多 陈安华 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期297-300,共4页
An essential problem in the design of mechanical impact systems is the impact of a piston on a rod. The impact of a semi finite cylindrical piston on a non uniform rod was studied. Based on wave mechanics and characte... An essential problem in the design of mechanical impact systems is the impact of a piston on a rod. The impact of a semi finite cylindrical piston on a non uniform rod was studied. Based on wave mechanics and characteristic line theory, an inverse numerical approach to determine the piston profile was proposed, by means of which the geometry of an impact piston may be determined from the given stress waveform for a given rod profile. Numerical results show that the given stress waveform may be produced by means of the alternatives of design of piston and rod. There is good agreement between the experimental results and numerical results. [ 展开更多
关键词 impact PISTON PROFILE NON-UNIFORM ROD inversE numerical approach stress WAVEFORM
下载PDF
Analysis on method for effective in-situ stress measurement in hot dry rock reservoir 被引量:1
16
作者 SUN Dong-sheng ZHAO Wei-hua +1 位作者 LI A-wei ZHANG An-bin 《Journal of Groundwater Science and Engineering》 2015年第1期9-15,共7页
With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The... With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples. 展开更多
关键词 Geothermy HDR in-situ stress measurement ASR method
下载PDF
Reliability analysis of in-situ stress measurement using circumferential velocity anisotropy
17
作者 Jiandong Liu1, 2, Luhe Shen1, 2, Juan Jin1, 2 1 Key Laboratory of Oil and Gas Reservoirs, China National Petroleum Corporation, Beijing, 100083, China 2 PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 100083, China 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期457-460,共4页
In-situ stress measurement for deep reservoir formation is difficult in terms of security, reliability and technique. Acoustic velocity anisotropy test is a basic method for stress measurement of rock cores, which is ... In-situ stress measurement for deep reservoir formation is difficult in terms of security, reliability and technique. Acoustic velocity anisotropy test is a basic method for stress measurement of rock cores, which is based on the distribution of acoustic velocity in different directions around rock cores. The heterogeneity of core samples, such as fractures and gravel contained, can also lead to wave velocity anisotropy. Therefore, the corresponding reliability evaluation method is established to exclude some other anisotropy factors caused by non-tectonic stresses. In this paper, the reliability of testing results is evaluated from three aspects, i.e. phase difference, anisotropy index and waveform, to remove the factors caused by non-tectonic stresses. 展开更多
关键词 acoustic VELOCITY MEASUREMENT wave VELOCITY ANISOTROPY in-situ stress MEASUREMENT
下载PDF
Comparison between double caliper,imaging logs,and array sonic log for determining the in-situ stress direction:A case study from the ultra-deep fractured tight sandstone reservoirs,the Cretaceous Bashijiqike Formation in Keshen8 region of Kuqa depress
18
作者 Song Wang Gui-Wen Wang +5 位作者 Dong Li Xing-Neng Wu Xu Chen Qi-Qi Wang Jun-Tao Cao Yi-Lin Zhang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2601-2617,共17页
The tight sandstone in the Tarim Basin has the characteristics of large burial depth and development of nature fractures due to concentrated in-situ stress. Identifying the present-day in-situ stress orientation is im... The tight sandstone in the Tarim Basin has the characteristics of large burial depth and development of nature fractures due to concentrated in-situ stress. Identifying the present-day in-situ stress orientation is important in hydrocarbon exploration and development, but also a key scientific question in understanding naturally fractured reservoirs. This paper presents a case study where we integrate various methods using wireline and image-log data, to identify present-day in-situ stress direction of ultra-deep fractured tight sandstone reservoirs, in the Kuqa depression. We discuss the formation mechanism of the elliptical borehole, compares the advantages and applicable conditions of the double caliper method,resistivity image logs and array sonic logs method. The well borehole diameter is measured orthogonally,then the ellipse is fitted, and the in-situ stress orientation is identified by the azimuth of the short-axis borehole, but it fails in the borehole expansion section, the fracture development section and the borehole collapse section. The micro-resistivity image logs method reveals the borehole breakouts azimuth, and also the strike of induced fractures, which are used to determine the orientation of in-situ stress. However, under water-based mud conditions, it’s hard to distinguish natural fractures from induced fractures by image logs. Under oil-based mud conditions, the induced fractures are difficult to identify due to the compromised image quality. As for the sonic log, shear waves will split when passing through an anisotropic formation, shear waves will split during propagation, and the azimuth of fast shear waves is consistent with the orientation of in-situ stress. However, it is usually affected by the anisotropy caused by the excessively fast rotation of the well log tools, so that the azimuth of fast shear wave cannot effectively reflect the orientation of the in-situ stress. Based on comprehensive assessment and comparison, in this paper we propose a method integrating various logging data to identify the orientation of in-situ stress. Among various types of logging data, the breakouts azimuth identified by image logs is proved to be the most credible in identifying the orientation of in-situ stress, while using the direction of induced fractures under water-based mud conditions is also viable. However, the azimuth of the fast shear wave is consistent with the orientation of maximum in-situ stress only when the rotation speed of the logging tool is low. The caliper method can be used as a reference for verifying the other two methods. Using this integrated method to study the orientation of in-situ stress in the Keshen8 trap, the results show that faults are an important factor affecting the direction of in-situ stress, while multi-level faults will produce superimposed effects that cause the current direction of in-situ stress to change. 展开更多
关键词 Fractured tight sandstone in-situ stress Orientation Well logs
下载PDF
Influence of mountain-valley morphology on in-situ stress distribution
19
作者 ZHANG Chuan-qing CUI Guo-jian +2 位作者 ZHOU Hui YANG Fan-jie LU Jing-jing 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2447-2459,共13页
The in-situ stress field is a key factor controlling the successful construction of a large number of underground structures in mountainous areas,and is intensively affected by the mountainvalley topography.The effect... The in-situ stress field is a key factor controlling the successful construction of a large number of underground structures in mountainous areas,and is intensively affected by the mountainvalley topography.The effects of mountain-valley morphology(the width of the mountain top platform,mountain height,slope angle,and width of the valley bottom)on the distribution of the in-situ stress field were analyzed and interpreted using numerical modeling techniques,where the spatial distribution and maximum values of the horizontal and vertical stresses were analyzed.The results showed that there existed a critical value of the topographic influence depth,where the in-situ stress distribution varied significantly as mountain-valley morphology,after which the influence diminishes.Tectonic action has a more remarkable influence on the in-situ stress distribution than gravitational action under the same mountain-valley morphology.Moreover,the relationships between the magnitudes of these stress components and the morphology variables are described using empirical formulas,which can be directly applied to different topographies to rapidly achieve a rational estimation.The findings of this study can be very useful for quickly understanding the in-situ stress distribution and as stress measurement guidelines. 展开更多
关键词 in-situ stress Mountain-valley morphology Gravitational action Tectonic action
下载PDF
Dynamic inversion of the rupture parameters on fault system with complex geometry:A GPU parallel genetic algorithm based on BIEM
20
作者 Feng Qian Haiming Zhang 《Earthquake Science》 2019年第5期187-196,共10页
In this study,we attempted to perform an earthquake source dynamic inversion to obtain dynamic parameters on fault system with complex geometry.The forward modeling of the spontaneous rupture process is carried out us... In this study,we attempted to perform an earthquake source dynamic inversion to obtain dynamic parameters on fault system with complex geometry.The forward modeling of the spontaneous rupture process is carried out using a boundary integral equation method(BIEM)based on unstructured meshing,and the inversion method is implemented by a genetic algorithm based on a parallel acceleration of the GPU.The source model in this study is a branched fault,which is described by two physical parameters,the initial stress T0 and the critical slip-weakening distance Dc.We investigated the effect of the inherited parameters on the accuracy and convergence of the inversion simulation.Numerical results showed that if a set of parameters are assigned properly,the inversion of rupture parameters is accurate and converges fast.It is easy to converge to a local optimal solution during the inversion process if inappropriate inherited parameters are selected.Compared with T0,D。has better convergence and accuracy in.the inversion process. 展开更多
关键词 dynamic inversion genetic algorithm initial stress critical slip-weakening distance
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部