期刊文献+
共找到1,596篇文章
< 1 2 80 >
每页显示 20 50 100
Microstructure and mechanical properties of Fe/NbC composite layer prepared by in-situ reaction
1
作者 Le Chen Ji-lin Li +4 位作者 Meng-jun Wang Jie Zheng Yao Zhu Zhuo-lin Liu Bing-gui Lü 《China Foundry》 SCIE CAS CSCD 2023年第4期356-364,共9页
NbC ceramic surface-reinforced steel matrix composites were prepared by an in-situ reaction method at different temperatures(1,050℃,1,100℃and 1,150℃)for different times(1 h,2 h and 3 h).The phase constitution,micro... NbC ceramic surface-reinforced steel matrix composites were prepared by an in-situ reaction method at different temperatures(1,050℃,1,100℃and 1,150℃)for different times(1 h,2 h and 3 h).The phase constitution,microstructure and fracture morphology of NbC ceramic surface-reinforced steel matrix composites were analyzed by XRD,SEM and EDS,and the effects of the in-situ reaction temperature and time on the mechanical properties were systematically studied.The results indicate that the NbC reinforcement layer is formed through the reaction between Nb atoms and carbon atoms diffused from the steel matrix to the Nb plate.The thickness of this reinforcement layer increases as the reaction time prolongs.Additionally,an increase in reaction temperature results in a thicker reinforcement layer,although the rate of increase gradually decreases.The relationship among the thickness of the Nb C reinforcement layer,the reaction time and temperature was established by data fitting.The optimal tensile performance is achieved at 1,100℃for 1 h,with a tensile strength of 228 MPa.It is also found that the defects between the reinforcement layer and the steel matrix are related to reaction temperature.At 1,100℃,these defects are minimal.Fracture mostly occurs in the NbC reinforced layer of the composites,and the fracture mode is characterized by typical intergranular brittle fracture. 展开更多
关键词 in-situ reaction NbC reinforcement layer MICROSTRUCTURE mechanical property
下载PDF
Eutectic Solution Enables Powerful Click Reaction for In-Situ Construction of Advanced Gel Electrolytes
2
作者 Weixin Ye Jirong Wang +1 位作者 Chi Zhang Zhigang Xue 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期258-264,共7页
Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic am... Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic amine catalyst hamper its application in in-situ batteries.Herein,a nitrogen-containing eutectic solution is designed as both the catalyst of the thiol-ene reaction and the plasticizer to in-situ synthesize the gel polymer electrolytes,realizing a mild in-situ gelation process and the preparation of high-performance gel electrolytes.The obtained gel polymer electrolytes exhibit a high ionic conductivity of 4×10^(−4)S cm^(−1)and lithium-ion transference number(t_(Li)^(+))of 0.51 at 60°C.The as-assembled Li/LiFePO_(4)(LFP)cell delivers a high initial discharge capacity of 155.9 mAh g^(-1),and a favorable cycling stability with the capacity retention of 82%after 800 cycles at 1 C is also obtained.In addition,this eutectic solution significantly improves the rate performance of the LFP cell with high specific capacity of 141.5 and 126.8 mAh g^(-1)at 5 C and 10 C,respectively,and the cell can steadily work at various charge–discharge rate for 200 cycles.This powerful and efficient strategy may provide a novel way for in-situ preparing gel polymer electrolytes with desirable comprehensive performances. 展开更多
关键词 eutectic solution in-situ gelation lithium metal battery polymer electrolyte thiol-ene click reaction
下载PDF
Thermal Behavior,Nonisothermal Decomposition Reaction Kinetics of Mixed Ester Double-base Gun Propellants 被引量:6
3
作者 YI Jian-hua ZHAO Feng-qi XU Si-yu GAO Hong-xu HU Rong-zu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期608-614,共7页
The thermal decomposition behavior and nonisothermal reaction kinetics of the double-base gun propellants containing the mixed ester of triethyleneglycol dinitrate(TEGDN) and nitroglycerin(NG) were investigated by... The thermal decomposition behavior and nonisothermal reaction kinetics of the double-base gun propellants containing the mixed ester of triethyleneglycol dinitrate(TEGDN) and nitroglycerin(NG) were investigated by thermogravimetry(TG) and differential thermogravimetry(DTG), and differential scanning calorimetry(DSC) under the high-pressure dynamic ambience. The results show that the thermal decomposition processes of the mixed nitric ester gun propellants have two mass-loss stages. Nitric ester evaporates and decomposes in the first stage, and nitrocellulose and centralite II(C2) decompose in the second stage. The mass loss, the DTG peak points, and the terminated temperatures of the two stages are changeable with the difference of the mass ratio of TEGDN to NG. There is only one obvious exothermic peak in the DSC curves under the different pressures. With the increase in the furnace pressure, the peak temperature decreases, and the decomposition heat increases. With the increase in the content of TEGDN, the decomposition heat decreases at 0.1 MPa and rises at high pressure. The variety of mass ratio of TEGDN to NG makes few effect on the exothermic peak temperatures in the DSC curves at different pressures. The kinetic equation of the main exothermal decomposition reaction of the gun propellant TG0601 was determined as: dα/dt=1021.59(1-α)3e-2.60×104/T. The reaction mechanism of the process can be classified as chemical reaction. The critical temperatures of the thermal explosion(Tbe and Tbp) obtained from the onset temperature(Te) and the peak temperature(Tp) are 456.46 and 473.40 K, respectively. ΔS≠, ΔH≠, and ΔG≠ of the decomposition reaction are 163.57 J·mol^-1·K^-1, 209.54 kJ·mol^-1, and 133.55 kJ·mol^-1, respectively. 展开更多
关键词 Mixed nitric ester gun propellant Triethyleneglycol dinitrate thermal behaviors Nonisothermal decomposition reaction kinetics
下载PDF
Boudouard reaction driven by thermal plasma for efficient CO2 conversion and energy storage 被引量:5
4
作者 Zhikai Li Tao Yang +5 位作者 Shaojun Yuan Yongxiang Yin Edwin J.Devid Qiang Huang Daniel Auerbach Aart W.Kleyn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期128-134,I0006,共8页
Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worl... Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worldwide,there is currently no process that achieves economically viable values for both CO2 conversion fraction and energy recovery efficiency simultaneously.Here we demonstrate that a process that utilizes the Boudouard reaction,CO^2++C→2 CO,driven by a thermal plasma allows both 95%CO2 conversion to CO and energy recovery efficiency of 70%,values far higher than seen so far.By comparing the conversion process with and without CO2 excitation by a plasma and by using optical emission spectroscopy we show that the improved performance is due to a novel mode of operation where CO2 is pyrolyzed into an active mixture of CO,O and O2 by an arc discharge which is then introduced into a fixed bed to interact with carbon material.In this way,the free oxygen in the mixture combusts with carbon to form CO,and residual plasma excited CO2 is reduced by carbon.In the overall process,the endothermic Boudouard reaction is partially replaced by an exothermic reaction,and the excess electric energy to produce CO2 plasma is reused in the carbon bed. 展开更多
关键词 Boudouard reaction thermal PLASMA CO2 CONVERSION Energy RECOVERY efficiency
下载PDF
Thermal stability of Mg_2 Si epitaxial film formed on Si(111) substrate by solid phase reaction 被引量:2
5
作者 王喜娜 王勇 +8 位作者 邹进 张天冲 梅增霞 郭阳 薛其坤 杜小龙 张晓娜 韩晓东 张泽 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期3079-3083,共5页
A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 10... A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 100℃ in a molecular beam epitaxy (MBE) system.The thermal stability of the Mg2Si film was then systematically investigated by post annealing in an oxygen-radical ambient at 300℃,450℃ and 650℃,respectively.The Mg2Si film stayed stable until the annealing temperature reached 450℃ then it transformed into amorphous MgOx attributed to the decomposition of Mg2Si and the oxidization of dissociated Mg. 展开更多
关键词 MG2SI solid phase reaction thermal stability
下载PDF
Solar thermochemical reactions Ⅱ:Synthesis of 2-aminothiophenes via Gewald reaction induced by solar thermal energy 被引量:2
6
作者 Ramadan Ahmed Mekheimer Mohamed Abdallah Ameen Kamal Usef Sadek 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第7期788-790,共3页
Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal ... Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal energy. 展开更多
关键词 2-Aminothiophenes Gewald reaction Solar thermal energy
下载PDF
Numerical investigation of variable viscosities and thermal stratification effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of a chemical reaction 被引量:2
7
作者 I. Muhaimin R. Kandasamy Azme B. Khamis 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第11期1353-1364,共12页
An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid... An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid past a porous wedge in the presence of a chemical reaction. The wall of the wedge is embedded in a uniform nonDarcian porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically with finite difference methods. Numerical calculations up to the thirdorder level of truncation are carried out for different values of dimensionless parameters. The results are presented graphically, and show that the flow field and other quantities of physical interest are significantly influenced by these parameters. The results are compared with those available in literature, and show excellent agreement. 展开更多
关键词 variable viscosity chemical reaction non-Darcy flow mixed convection thermal stratification magnetic effect
下载PDF
Empirical correction of kinetic model for polymer thermal reaction process based on first order reaction kinetics 被引量:2
8
作者 Zhaoxiang Zhang Fei Guo +2 位作者 Wei Song Xiaohong Jia Yuming Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期132-144,共13页
Based on the theory of first-order reaction kinetics,a thermal reaction kinetic model in integral form has been derive.To make the model more applicable,the effects of time and the conversion degree on the reaction ra... Based on the theory of first-order reaction kinetics,a thermal reaction kinetic model in integral form has been derive.To make the model more applicable,the effects of time and the conversion degree on the reaction rate parameters were considered.Two types of undetermined functions were used to compensate for the intrinsic variation of the reaction rate,and two types of correction methods are provided.The model was explained and verified using published experimental data of different polymer thermal reaction systems,and its effectiveness and wide adaptability were confirmed.For the given kinetic model,only one parameter needs to be determined.The proposed empirical model is expected to be used in the numerical simulation of polymer thermal reaction process. 展开更多
关键词 thermal reaction Polymer processing reaction kinetics Mathematical modeling Empirical correction
下载PDF
Influence of Bi Addition on Pure Sn Solder Joints: Interfacial Reaction, Growth Behavior and Thermal Behavior 被引量:1
9
作者 赖彦青 胡小武 +1 位作者 LI Yulong JIANG Xiongxin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期668-675,共8页
The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds (IMCs) layer(7/-Cu6Sn5 + e-Cu3Sn) for various soldering time a... The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds (IMCs) layer(7/-Cu6Sn5 + e-Cu3Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-xBi solder alloys were investigated. The Cu6Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3Sn IMC was formed at the interface between Cu6Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs, but excessive Bi (≥ 5 wt%) inhibited the growth of Cu6Sn5 and Cu3Sn IMC in Sn-xBi/ Cu microelectronic interconnects. Furthermore, with the Bi contents increasing (Sn-l0Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6Sn5 layer and the solder. 展开更多
关键词 INTERMETALLIC compound Sn-xBi SOLDER joints INTERFACIAL reaction thermal BEHAVIOR
下载PDF
Thermal Decomposition Reaction Kinetics Model of Powdered Bastnaesite 被引量:1
10
作者 涂赣峰 张世荣 +2 位作者 任存治 邢鹏飞 张成祥 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第4期265-267,共3页
The thermal decomposition procedure of powdered bastnaesite from Mianning was investigated, and TG DTA curves of bastnaesite were tested in atmosphere. According to the model provided by Criado, the kinetics data we... The thermal decomposition procedure of powdered bastnaesite from Mianning was investigated, and TG DTA curves of bastnaesite were tested in atmosphere. According to the model provided by Criado, the kinetics data were calculated and treated with thermal analysis techniques, and kinetics curves of thermal decomposition reaction of powdered bastnaesite were drawn. Comparing these curves with the standard curves and combining with the previous research results of kinetics parameter calculation, the results confirmed that the reaction mechanism was nucleation and nuclei growth, and its differential and integral forms of reaction kinetics model can be expressed as: f(α)=(1-α) and g(α) =-ln(1- α ) respectively. 展开更多
关键词 rare earths bastnasite thermal decomposition KINETICS reaction mechanism
下载PDF
Thermal and saline tolerance of Antarctic krill Euphausia superba under controlled in-situ aquarium conditions 被引量:1
11
作者 ZHU Guoping LIU Zijun +3 位作者 YANG Yang WANG Zhen YANG Wenjie XU Liuxiong 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第3期1080-1089,共10页
As a key species of the Southern Ocean ecosystem,the thermal and saline tolerances of Antarctic krill(Euphausia superb a Dana)are relatively unknown because of the challenging environment and complicated situations ne... As a key species of the Southern Ocean ecosystem,the thermal and saline tolerances of Antarctic krill(Euphausia superb a Dana)are relatively unknown because of the challenging environment and complicated situations needed for observation have inhibited in-situ experiments in the field.Hence,the thermal and saline tolerance of krill were examined under in-situ aquarium conditions with different controlled scenarios.According to the experiments,the critical lethal times of krill were 24h,2h and 0.5h under 9℃,12℃,and 15℃,respectively,and the estimated 50%lethal times were about 17.1 h and 1.7 h under 12℃and 15℃,respectively.Additionally,the critical lethal times(the estimated 50%lethal times)of krill were approximately 14h and 0.5h(about 22.9 h and 1.7 h)of salinity under 19.7 and 15.9,respectively.The observed critical and 50%lethal times of krill were 0.5 h and approximately 1.4 h,respectively,salinity under 55.2.The critical and 50%lethal temperatures of krill were 13℃and approximately 14.2℃,respectively.Additionally,the critical and 50%lethal salinity was 19.6 and approximately 17.5 for the lower saline(below normal oceanic salinity[34.4])environment and 50.3 and approximately 53.2 for the higher saline(above 34.4)environment,respectively.The upper thermal and saline preferences of krill can be considered 6℃and 26.8 to 41.2,respectively.These results can provide potential scenarios for predicting the possible fate of this key species in the Southern Ocean. 展开更多
关键词 Euphausia superba thermal TOLERANCE SALINE TOLERANCE thermal PREFERENCE in-situ AQUARIUM experiment
下载PDF
Entropy analysis in electrical magnetohydrodynamic(MHD) flow of nanofluid with effects of thermal radiation,viscous dissipation,and chemical reaction 被引量:5
12
作者 Yahaya Shagaiya Daniel Zainal Abdul Aziz +1 位作者 Zuhaila Ismail Faisal Salah 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期235-242,共8页
The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, vis... The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations.The resultant system of equations is then solved numerically using implicit finite difference method.The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values. 展开更多
关键词 Entropy generation MHD nanofluid thermal radiation Bejan number Chemical reaction Viscous dissipation
下载PDF
In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes 被引量:1
13
作者 Zhen Fang Yao Liu +5 位作者 Chengyi Song Peng Tao Wen Shang Tao Deng Xiaoqin Zeng Jianbo Wu 《Journal of Semiconductors》 EI CAS CSCD 2022年第4期46-59,共14页
Semiconductor photocatalysis, as a key part of solar energy utilization, has far-reaching implications for industrial, agricultural, and commercial development. Lack of understanding of the catalyst evolution and the ... Semiconductor photocatalysis, as a key part of solar energy utilization, has far-reaching implications for industrial, agricultural, and commercial development. Lack of understanding of the catalyst evolution and the reaction mechanism is a critical obstacle for designing efficient and stable photocatalysts. This review summarizes the recent progress of in-situ exploring the dynamic behavior of catalyst materials and reaction intermediates. Semiconductor photocatalytic processes and two major classes of in-situ techniques that include microscopic imaging and spectroscopic characterization are presented. Finally, problems and challenges in in-situ characterization are proposed, geared toward developing more advanced in-situ techniques and monitoring more accurate and realistic reaction processes, to guide designing advanced photocatalysts. 展开更多
关键词 in-situ semiconductor photocatalyst materials evolution reaction intermediate
下载PDF
Dense copper azide synthesized by in-situ reaction of assembled nanoporous copper microspheres and its initiation performance 被引量:1
14
作者 Xing-yu Wu Ming-yu Li +1 位作者 Qing-xuan Zeng Qing-xia Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1065-1072,共8页
Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using ... Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using polystyrene(PS)as templates.The copper shells thickness of NPC was controlled by adjusting the PS loading amount.The effects of copper shell on the morphology,structure and density of copper azide were investigated.The conversion increased from 87.12%to 95.31%when copper shell thickness decrease from 100 to 50 nm.Meanwhile,the density of copper azide prepared by 529 nm NPC for 24 h was up to 2.38 g/cm^(3).The hollow structure of this NPC was filled by swelling of copper azide which guaranteed enough filling volume for keeping the same shape as well as improving the charge density.Moreover,HNS-IV explosive was successfully initiated by copper azide with minimum charge thickness of 0.55 mm,showing that copper azide prepared has excellent initiation performance,which has more advantages in the application of miniaturized explosive systems. 展开更多
关键词 Nanoporous copper Electroless plating in-situ reaction Copper azide
下载PDF
Forward Looking Analysis Approach to Assess Copper Acetate Thermal Decomposition Reaction Mechanism 被引量:1
15
作者 Itab Youssef Sécou Sall +2 位作者 Thierry Dintzer Sana Labidi Corinne Petit 《American Journal of Analytical Chemistry》 2019年第5期153-170,共18页
Thermal decomposition course of copper acetate monohydrate was monitored by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) coupled with μ gas chromatography-mass spectrometry (μGC-MS) ... Thermal decomposition course of copper acetate monohydrate was monitored by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) coupled with μ gas chromatography-mass spectrometry (μGC-MS) with other analytical techniques (thermogravimetry analysis and in situ X-ray diffraction). Non-isothermal kinetic was examined in air and Ar. A complete analysis of the evolution of infrared spectra matched with crystalline phase transition data during the course of reaction allows access to significant and accurate information about molecular dynamics. While thermogravimetry gives broad conclusion about two steps reaction (dehydration and decarboxylation), in line approach (in situ X-ray and in situ DRIFT coupled to μGC-MS) is proposed as an example of a new robust and forward-looking analysis. While decomposition mechanism of copper acetate monohydrate is still not well elucidated yet previously, the present in-line characterization results lead to accurate data making the corresponding mechanism explicit. 展开更多
关键词 In-Operando Spectroscopy and CHROMATOGRAPHY thermal Decomposition reaction Mechanism Copper ACETATE CROSS-LINKED Characterization Data
下载PDF
Influence of Chemical Reaction and Thermal Radiation on MHD Boundary Layer Flow and Heat Transfer of a Nanofluid over an Exponentially Stretching Sheet 被引量:1
16
作者 N. G. Rudraswamy B. J. Gireesha 《Journal of Applied Mathematics and Physics》 2014年第2期24-32,共9页
In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretch... In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretching sheet to be impermeable, the effect of chemical reaction, thermal radiation, thermopherosis, Brownian motion and suction parameters in the presence of uniform magnetic field on heat and mass transfer are addressed. The governing system of equations is transformed into coupled nonlinear ordinary differential equations using suitable similarity transformations. The transformed equations are then solved numerically using the well known Runge-Kutta-Fehlberg method of fourth-fifth order. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and the results are presented in both graphical and tabular forms. 展开更多
关键词 NANOFLUID EXPONENTIALLY STRETCHING Sheet Chemical reaction thermal Radiation Boundary Layer Flow Heat and Mass Transfer
下载PDF
Thermal Diffusion Effect on MHD Heat and Mass Transfer Flow past a Semi Infinite Moving Vertical Porous Plate with Heat Generation and Chemical Reaction 被引量:1
17
作者 Gurivireddy P. Raju M. C. +1 位作者 Mamatha B. Varma S. V. K. 《Applied Mathematics》 2016年第7期638-649,共12页
The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid a... The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ. 展开更多
关键词 Heat Generation/Absorption Chemical reaction MHD thermal Radiation thermal Diffusion Heat and Mass Transfer Semi-Infinite Vertical Plate
下载PDF
Novel aluminum-based fuel:Facile preparation to improve thermal reactions 被引量:1
18
作者 Fa-yang Guan Hui Ren +2 位作者 Wan-jun Zhao Xin-zhou Wu Qing-jie Jiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1852-1862,共11页
To improve the thermal properties of aluminum(Al)in the energetic system,a coated structure with ammonium perchlorate(AP)was prepared by a facile approach.And N,N-Dimethylformamide(DMF)was chosen as an ideal solvent b... To improve the thermal properties of aluminum(Al)in the energetic system,a coated structure with ammonium perchlorate(AP)was prepared by a facile approach.And N,N-Dimethylformamide(DMF)was chosen as an ideal solvent based on heterogeneous nucleation theory and molecular dynamics simulation.This coated structure could enlarge the contact area and improve the reaction environment to enhance the thermal properties.The addition of AP could accelerate oxidation temperature of Al with around 17.5°C.And the heat release of 85@15 composition rises to 26.13 k J/g and the reaction degree is97.6%with higher peak pressure(254.6 k Pa)and rise rate(1.397 MPa/s).An ideal ratio with 15 wt%AP was probed primarily.The high energy laser-induced shockwave experiment was utilized to simulate the reaction behavior in hot field.And the larger activated mixture of coated powder could release more energy to promote the growth of shockwave with higher speed up to 518.7±55.9 m/s.In conclusion,85@15 composition is expected to be applied in energetic system as a novel metal fuel. 展开更多
关键词 Aluminum-based fuel Heterogeneous nucleation Molecular dynamics simulation thermal reaction High energy laser-induced shockwave experiment
下载PDF
A Review of In‑Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions 被引量:3
19
作者 Jinyu Zhao Jie Lian +2 位作者 Zhenxin Zhao Xiaomin Wang Jiujun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期61-113,共53页
Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overco... Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed. 展开更多
关键词 Oxygen reduction reaction Catalysts in-situ techniques Active sites MECHANISMS
下载PDF
Preparation by a Rheological Phase Reaction Method and Thermal Decomposition Reaction Mechanism of Nickelous Salicylate Tetrahydrate
20
作者 Wang Jin\|long, Yuan Liang\|jie, Yang Yi\|yong, Sun Ju\|tang , Zhang Ke\|li College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第03A期853-856,共4页
The single crystal nickel salicylate tetrahydrate was prepared with the rheological phase reaction method from nickelous hydroxide and salicylic acid. The crystal structure was determined. It is monoclinic, space grou... The single crystal nickel salicylate tetrahydrate was prepared with the rheological phase reaction method from nickelous hydroxide and salicylic acid. The crystal structure was determined. It is monoclinic, space group P2 1/n, a= 0.678 74 (3), b=0.515 91(2), c =2.313 30(9) nm, β= 90.928 6(17)° , V =0.809 94(6) nm 3, Z=2, ρ calcd = 1.661 g\5cm -3 . Final R indices: R =0.027 9 and wR= 0.065 0 \[I >2σ(I)\]. The thermal decomposition mechanism in an inert atmosphere was investigated via TG, DTG and DTA. The thermal decomposition products were characterized with IR and micro\|powder X\|ray diffraction method. A new coordination polymer (NiC 6 H 4 O) n as an intermediate product and nanoscale metal nickel were obtained in the ranges of 364\|429 ℃ and 429\|680 ℃, respectively. 展开更多
关键词 nickelous salitylate tetrahydrate rheological phase reaction crystal structure thermal decomposition
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部