Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collec...Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.展开更多
Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well a...Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.展开更多
Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality ...Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.展开更多
Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant im...Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.展开更多
In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing ...In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.展开更多
In Algeria,water is a critically limited resource.Rapid demographic,urban and economic development has significantly increased water demand,the particularly for drinking water supply and agriculture.Groundwater serves...In Algeria,water is a critically limited resource.Rapid demographic,urban and economic development has significantly increased water demand,the particularly for drinking water supply and agriculture.Groundwater serves as the primary source of water in the Boumerdes Region,located in northern Algeria,Therefore evaluating groundwater quality for water supply and irrigation purposes is very crucial.In this study,49 groundwater samples were collected in 2021 and analyzed based on 17 physicochemical parameters.These results were processed using multivariate analysis and compared against the standards established by both the World Health Organization and Algerian Standards.The findings revealed that the concentrations of Sodium,Calcium,Magnesium,and Nitrate of some samples exceeded acceptable limits,indicating that physicochemical treatment is necessary before use for drinking water supply.For irrigation suitability,several indices were employed,including Sodium Adsorption Rate(SAR),Wilcox diagram,Magnesium Absorption Ratio(MAR),Residual Sodium Bicarbonate(RSB),Permeability Index(PI)and Stuyfzand Index.The results of these indices show that groundwater in the region generally meets irrigation standards with a low risk.However,the groundwater should still be managed carefully to prevent salinityrelated issues.This study highlights the current status of groundwater quality the Boumerdes region and offers important insights for the sustainable management of water resources in the area.展开更多
Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 ...Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.展开更多
The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from ...The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from the river during a period of dry season (January-February) and a period of rainy season (June and September). The various physicochemical parameters were measured according to Afnor standardized methods. The readings of temperature, turbidity, pH and conductivity made it possible to account for the disturbances occurring in water quality. A temporal variation correlated with the seasons (dry or rainy) is noted. Turbidity depends on the concentration of suspended solids (SS) in the water and drained particles and therefore on the seasons. Just like the temperature, the conductivity changes with the season. The waters of the Méné River are generally acidic. The results obtained show that there is a low level of pollution by chlorides, phosphates, nitrites and nitrates. A slight pollution of the waters of Méné in organic matter (chemical oxygen demand values are less than 25 mg∙L−1 during dry season and 32.33 ± 4.73 mg∙L−1 during rainy season) was observed. The concentrations of metallic trace elements such as iron, manganese and aluminum indicate significant pollution of these waters by these elements. Overall, the waters of the Méné River are of satisfactory quality because all the physicochemical parameters analyzed have values below standards during the dry season as well as during the rainy season with the exception of COD and a few metallic trace elements.展开更多
This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin(Northeastern Algeria).The objective is to evaluate water quality suitability for domestic purp...This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin(Northeastern Algeria).The objective is to evaluate water quality suitability for domestic purposes through the application of water quality index(WQI).A total of 24 water points(wells and borewells)evenly distributed in the basin were collected and analyzed in the laboratory for determining the major ions and other geochemical parameters in the groundwater.The groundwater hydrochemical types were identified as Cl–Na and Cl–HCO_(3)^(–)Na,with the dominant major ions were found in the order of Na^(+)>Ca^(2+)>Mg^(2+)for cations,and Cl^(−)>SO_(4)^(2−)>HCO_(3)^(–)>NO_(3)^(−)for anions.Results suggest that weathering,dissolution of carbonate,sulfate,salt rocks,and anthropogenic activities were the major contributors to ion content in the groundwater.The Water Quality Index(WQI)was calculated to assess the water quality of potable water.Approximately 50%of the sampled sites exhibited good water quality.However,the study highlights significant NO_(3)contamination in the study area,with 50%of samples exceeding permissible limits.Therefore,effective treatment measures are crucial for the safe consumption of groundwater.展开更多
Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and wa...Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.展开更多
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet...As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.展开更多
Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region o...Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.展开更多
The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake T...The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.展开更多
The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined u...The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.展开更多
Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasi...Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasing across the globe. In this study, the physical parameters of potable well waters in the key mining areas in Nimikoro and Tankoro Chiefdoms in Kono District were analyzed for compliance with drinking water quality standard. To do this, both unpurged and purged well water samples were collected once every month for a period of one year. Some of the well water properties like temperature, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured on site and others determined in the laboratory. The data collected from the laboratory analyses were statistically analyzed in MS Excel, SPSS and ArcGIS environments for quality trends in time-space fabric. The results showed that well water quality in the study area generally fell short of drinking water quality standards of Sierra Leone and WHO. There were high temperature and turbidity during the dry season and then high TDS and EC during the rainy season. Temperature and turbidity also significantly influenced well water quality in the study area, much more than TDS and EC. The implications for drinking water of lower quality than the standard could be huge for the local population and therefore needs the attention of stakeholders in the study area and decision makers in the country.展开更多
This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port H...This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.展开更多
Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments re...Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.展开更多
The major phytoplankton was investigated and analyzed in landscape water of six campuses in Nanjing Xianlin University Town,and water quality was evaluated by single factor assessment method and comprehensive weighted...The major phytoplankton was investigated and analyzed in landscape water of six campuses in Nanjing Xianlin University Town,and water quality was evaluated by single factor assessment method and comprehensive weighted evaluation method.The result showed that the major phytoplankton groups were Cyanophyta,Chlorophyta and Bacillariophyta.Besides,each evaluation indicator showed that waterbodies in four campuses were eutrophicated and result of single factor evaluation showed water quality all belonged to poor category V.The result of comprehensive weighted assessment showed that waters in Nanjing Normal University and Nanjing University of Posts and Telecommunications were seriously polluted,cyanobacterial bloom appearing.Waters in Nanjing University of Chinese Medicine and Nanjing Forest Police College hadn't been eutrophicated.展开更多
Ulansuhai Lake is the important component part of irrigation and drainage system in Hetao irrigation region of Inner Mongolia.We applied the attribute recognition method in the summer water quality evaluation of Ulans...Ulansuhai Lake is the important component part of irrigation and drainage system in Hetao irrigation region of Inner Mongolia.We applied the attribute recognition method in the summer water quality evaluation of Ulansuhai Lake and divided according to the lake situation.The water quality in every area was analyzed,and the water quality situations in Ulansuhai Lake in 2006 and 2008 summer were gained.It provided the scientific basis for the effective utilization and the pollution treatment of Ulansuhai Lake.展开更多
In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis si...In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis simulation program (WASP) with the environmental fluiddynamics code (EFDC). The model was then calibrated and verified. Four scenarios (S1, S21, S22 andS23) were simulated using the model. Results show that the water quality of the Miyun Reservoirunder conditions of low surface water level is apparently affected by different amounts of inflowand different total phosphorus (TP) loadings. The chlorophyll-a concentration might exceed 10 μg/Lin many areas of the Miyun Reservoir (This limitative value is seen as a critical value ofeutrophication) when large loadings of TP enter due to the amount of inflow increasing. Results ofscenario S23 indicate that control of TP loadings can decrease chlorophyll-a concentrationeffectively, and the water quality of the Miyun Reservoir will improve or retain its status quo.展开更多
基金supported by Center for Resiliency(CfR)at Lamar University(Grant No.22PSSO1).
文摘Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.
基金funding from the European Union’s Horizon 2020 Research&Innovation Programme(2211)under the Partnership for Research and Innovation in the Mediterranean Area(PRIMA)Project"SHARInG-MeD"from the Directorate-General for Scientific Research and Technological Development(DGRSDT)under the Projets de Recherche Formation-Universitaire(PRFU)Projects(D00L02UN120120230002,D01N01UN120120230005)。
文摘Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.
基金supported by the National Natural Science Foundation of China(Grant No.31670473)the Wuhan Institute of Technology funding to Dr.Siyue Li(Grant No.21QD02).
文摘Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.
文摘Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.
基金financial support from the Government of the Perm Territory within the Framework of Scientific Project No.S-26/828the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.
文摘In Algeria,water is a critically limited resource.Rapid demographic,urban and economic development has significantly increased water demand,the particularly for drinking water supply and agriculture.Groundwater serves as the primary source of water in the Boumerdes Region,located in northern Algeria,Therefore evaluating groundwater quality for water supply and irrigation purposes is very crucial.In this study,49 groundwater samples were collected in 2021 and analyzed based on 17 physicochemical parameters.These results were processed using multivariate analysis and compared against the standards established by both the World Health Organization and Algerian Standards.The findings revealed that the concentrations of Sodium,Calcium,Magnesium,and Nitrate of some samples exceeded acceptable limits,indicating that physicochemical treatment is necessary before use for drinking water supply.For irrigation suitability,several indices were employed,including Sodium Adsorption Rate(SAR),Wilcox diagram,Magnesium Absorption Ratio(MAR),Residual Sodium Bicarbonate(RSB),Permeability Index(PI)and Stuyfzand Index.The results of these indices show that groundwater in the region generally meets irrigation standards with a low risk.However,the groundwater should still be managed carefully to prevent salinityrelated issues.This study highlights the current status of groundwater quality the Boumerdes region and offers important insights for the sustainable management of water resources in the area.
文摘Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.
文摘The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from the river during a period of dry season (January-February) and a period of rainy season (June and September). The various physicochemical parameters were measured according to Afnor standardized methods. The readings of temperature, turbidity, pH and conductivity made it possible to account for the disturbances occurring in water quality. A temporal variation correlated with the seasons (dry or rainy) is noted. Turbidity depends on the concentration of suspended solids (SS) in the water and drained particles and therefore on the seasons. Just like the temperature, the conductivity changes with the season. The waters of the Méné River are generally acidic. The results obtained show that there is a low level of pollution by chlorides, phosphates, nitrites and nitrates. A slight pollution of the waters of Méné in organic matter (chemical oxygen demand values are less than 25 mg∙L−1 during dry season and 32.33 ± 4.73 mg∙L−1 during rainy season) was observed. The concentrations of metallic trace elements such as iron, manganese and aluminum indicate significant pollution of these waters by these elements. Overall, the waters of the Méné River are of satisfactory quality because all the physicochemical parameters analyzed have values below standards during the dry season as well as during the rainy season with the exception of COD and a few metallic trace elements.
文摘This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin(Northeastern Algeria).The objective is to evaluate water quality suitability for domestic purposes through the application of water quality index(WQI).A total of 24 water points(wells and borewells)evenly distributed in the basin were collected and analyzed in the laboratory for determining the major ions and other geochemical parameters in the groundwater.The groundwater hydrochemical types were identified as Cl–Na and Cl–HCO_(3)^(–)Na,with the dominant major ions were found in the order of Na^(+)>Ca^(2+)>Mg^(2+)for cations,and Cl^(−)>SO_(4)^(2−)>HCO_(3)^(–)>NO_(3)^(−)for anions.Results suggest that weathering,dissolution of carbonate,sulfate,salt rocks,and anthropogenic activities were the major contributors to ion content in the groundwater.The Water Quality Index(WQI)was calculated to assess the water quality of potable water.Approximately 50%of the sampled sites exhibited good water quality.However,the study highlights significant NO_(3)contamination in the study area,with 50%of samples exceeding permissible limits.Therefore,effective treatment measures are crucial for the safe consumption of groundwater.
文摘Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.
文摘As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.
文摘Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.
文摘The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.
文摘The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.
文摘Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasing across the globe. In this study, the physical parameters of potable well waters in the key mining areas in Nimikoro and Tankoro Chiefdoms in Kono District were analyzed for compliance with drinking water quality standard. To do this, both unpurged and purged well water samples were collected once every month for a period of one year. Some of the well water properties like temperature, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured on site and others determined in the laboratory. The data collected from the laboratory analyses were statistically analyzed in MS Excel, SPSS and ArcGIS environments for quality trends in time-space fabric. The results showed that well water quality in the study area generally fell short of drinking water quality standards of Sierra Leone and WHO. There were high temperature and turbidity during the dry season and then high TDS and EC during the rainy season. Temperature and turbidity also significantly influenced well water quality in the study area, much more than TDS and EC. The implications for drinking water of lower quality than the standard could be huge for the local population and therefore needs the attention of stakeholders in the study area and decision makers in the country.
文摘This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.
文摘Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.
基金Supported by National Foundation for Fostering Talents in Basic Science(J0730650)~~
文摘The major phytoplankton was investigated and analyzed in landscape water of six campuses in Nanjing Xianlin University Town,and water quality was evaluated by single factor assessment method and comprehensive weighted evaluation method.The result showed that the major phytoplankton groups were Cyanophyta,Chlorophyta and Bacillariophyta.Besides,each evaluation indicator showed that waterbodies in four campuses were eutrophicated and result of single factor evaluation showed water quality all belonged to poor category V.The result of comprehensive weighted assessment showed that waters in Nanjing Normal University and Nanjing University of Posts and Telecommunications were seriously polluted,cyanobacterial bloom appearing.Waters in Nanjing University of Chinese Medicine and Nanjing Forest Police College hadn't been eutrophicated.
基金Supported by National Natural Science Fund(50969005)
文摘Ulansuhai Lake is the important component part of irrigation and drainage system in Hetao irrigation region of Inner Mongolia.We applied the attribute recognition method in the summer water quality evaluation of Ulansuhai Lake and divided according to the lake situation.The water quality in every area was analyzed,and the water quality situations in Ulansuhai Lake in 2006 and 2008 summer were gained.It provided the scientific basis for the effective utilization and the pollution treatment of Ulansuhai Lake.
文摘In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis simulation program (WASP) with the environmental fluiddynamics code (EFDC). The model was then calibrated and verified. Four scenarios (S1, S21, S22 andS23) were simulated using the model. Results show that the water quality of the Miyun Reservoirunder conditions of low surface water level is apparently affected by different amounts of inflowand different total phosphorus (TP) loadings. The chlorophyll-a concentration might exceed 10 μg/Lin many areas of the Miyun Reservoir (This limitative value is seen as a critical value ofeutrophication) when large loadings of TP enter due to the amount of inflow increasing. Results ofscenario S23 indicate that control of TP loadings can decrease chlorophyll-a concentrationeffectively, and the water quality of the Miyun Reservoir will improve or retain its status quo.