According to the complete genome of foot-and-mouth disease virus(FMDV)type O,a pair of special primers was designed to amplify VP1 gene.The VP1 gene was amplified by RT-PCR and subsequently inserted into the expressio...According to the complete genome of foot-and-mouth disease virus(FMDV)type O,a pair of special primers was designed to amplify VP1 gene.The VP1 gene was amplified by RT-PCR and subsequently inserted into the expression vector pGEX-6p-1 and induced by IPTG.Then SDS-PAGE showed the expressed protein was 51 kD in molecular weight.Then the product was purified by GSTrap FF columns.The product was detected through Western-blot that showed the protein has antigenicity.It provided fundamental data and materials for further investigation on diagnosis method of FMDV.展开更多
In this experiment conducted to study the inactivation dynamics of infectious bursal disease virus (IBDV) by binary ethylenimine (BEI) in comparison with formalin, IBDV was isolated from the bursa of infected chic...In this experiment conducted to study the inactivation dynamics of infectious bursal disease virus (IBDV) by binary ethylenimine (BEI) in comparison with formalin, IBDV was isolated from the bursa of infected chickens and its confirmation was done by agar gel precipitation test. Viral suspensions were subjected to inactivation with BEI and formalin for pre-set time in- tervals. BEI was employed at concentrations of 0.001 and 0.002 mol/L while formalin was used at 0.1% and 0.2%. Sampling was done at 6, 12, 24, 36 and 48 h of incubation and samples were tested for their inactivation status in 9-day-old embryonated eggs and 3-week-old broiler chickens. IBDV was completely inactivated by 0.001 and 0.002 mol/L BEI after 36 h of incubation at 37℃, whereas formalin at 0. 1% and 0.2% concentrations inactivated IBDV in 24 h.展开更多
An amino acid mutation(R127→I) in the 3A non-structural protein of an FMDV serotype Asia1 rabbit-attenuated ZB strain was previously found after attenuation of the virus. To explore the effects of this mutation on vi...An amino acid mutation(R127→I) in the 3A non-structural protein of an FMDV serotype Asia1 rabbit-attenuated ZB strain was previously found after attenuation of the virus. To explore the effects of this mutation on viral replication and infection, the amino acid residue isoleucine(I) was changed to arginine(R) in the infectious cDNA clone of the rabbit-attenuated ZB strain by sitedirected mutagenesis, and the R127-mutated virus was rescued. BHK monolayer cells and suckling mice were inoculated with the R127-mutated virus to test its growth property and pathogenicity, respectively. The effects of the R127 mutation on viral replication and virulence were analyzed. The data showed that there was a slight difference in plaque morphology between the R127-mutated and wild-type viruses. The growth rate of the mutated virus was lower in BHK-21 cells and its virulence in suckling mice was also attenuated. This study indicates that the R127 mutation in 3A may play an important role in FMDV replication in vitro and in pathogenicity in suckling mice.展开更多
Infection by foot-and-mouth disease virus(FMDV) is triggered by the acidic pH in endosomes after virus uptake by receptor-mediated endocytosis. However, dissociation of the FMDV 146S particle in mildly acidic conditio...Infection by foot-and-mouth disease virus(FMDV) is triggered by the acidic pH in endosomes after virus uptake by receptor-mediated endocytosis. However, dissociation of the FMDV 146S particle in mildly acidic conditions renders inactivated foot-and-mouth disease(FMD) vaccines much less effective. Type Asia1 FMDV mutants with increased resistance to acid inactivation were selected to study the molecular basis of viral resistance to acid-induced disassembly and improve the acid stability of FMDV. Sequencing of capsid-coding regions revealed four amino acid replacements(VP1 N17D, VP2 H145Y, VP2 G192D, and VP3 K153E) in the viral population of the acid-selected 10th passage. We performed single or combined mutagenesis using a reverse genetic system, and our results provide direct experimental evidence that VP2 H145Y or VP1 N17D substitution confers an acid-resistant phenotype to type Asia1 FMDV.展开更多
In this study, the coding region of type O FMDV capsid protein VP1 and a series of codon optimized DNA sequences coding for VP1 amino acid residues 141-160 (epitopel), tandem repeat 200-213 (epitope2 (+2)) and ...In this study, the coding region of type O FMDV capsid protein VP1 and a series of codon optimized DNA sequences coding for VP1 amino acid residues 141-160 (epitopel), tandem repeat 200-213 (epitope2 (+2)) and the combination of two epitopes (epitopel-2) was genetically cloned into the prokaryotic expression vector PPRoExHTb and pGEX4T-1, respectively. VP1 and the fused epitopes GST-E1, GST-E2 (+2) and GST-E1-2 were successfully solubly expressed in the cytoplasm of Escherichia coli and Western blot analysis demonstrated they retained antigenicity. Indirect VP1-ELISA and epitope ELISAs were subsequently developed to screen a panel of 80 field pig sera using LPB-ELISA as a standard test. For VP1-ELISA and all the epitope ELISAs, there were clear distinctions between the FMDV-positive and the FMDV-negative samples. Cross-reactions with pig sera positive to the viruses of swine vesicular disease virus that produce clinically indistinguishable syndromes in pigs or guinea pig antisera to FMDV strains of type A, C and Asia1 did not occur. The relative sensitivity and specificity for the GST-E1 ELISA, GST-E2 (+2), GST-E1-2 ELISA and VP1-ELISA in comparison with LPB-ELISA were 93.3% and 85.0%, 95.0% and 90%, 100% and 81.8%, 96.6% and 80.9% respectively. This study shows the potential use of the aforementioned epitopes as alternatives to the complex antigens used in current detection for antibody to FMDV structural proteins.展开更多
The complete genomic sequence of foot-and-mouth disease virus (FMDV) Chinese strain OH/CHA/99 was determined. The 8040 nt sequence and the deduced amino acid sequence werecompared with FMDV sequences published. The re...The complete genomic sequence of foot-and-mouth disease virus (FMDV) Chinese strain OH/CHA/99 was determined. The 8040 nt sequence and the deduced amino acid sequence werecompared with FMDV sequences published. The results showed that OH/CHA/99 shared highersequence homology with OTYTW/97, indicating their close genetic relationship. However,the strain had lower sequence identity with O1/Kaufbeuren/66 strain. Besides, largedeletions in 3A coding region were observed in OH/CHA/99. It was shown that the poly (A)tail of OH/CHA/99 had 56 As at least.展开更多
To investigate the security of semen biologically, 15 bull semen samples were collected (of which 5 exhibited clinical signs of Foot-and-mouth disease) and identified by RT-PCR and virus isolation. The results indicat...To investigate the security of semen biologically, 15 bull semen samples were collected (of which 5 exhibited clinical signs of Foot-and-mouth disease) and identified by RT-PCR and virus isolation. The results indicated that the semen of the infected bulls were contaminated by Foot-and-mouth disease virus (FMDV), but FMDV was not detected in semen samples from those bulls not showing clinical signs of Foot-and-mouth disease (FMD). This is the first report of the presence of FMDV in bull semen due to natural infection in China. The analysis of the partial sequence of the VP1 gene showed that the virus strain isolated from semen has 97.9% identity with the virus isolated from vesicular liquid of infected bulls showing typical signs of FMD and belonged to the same gene sub-group.展开更多
Foot-and-mouth disease (FMD) is an infectious and sometimes fatal viral disease that affects cloven-hoofed animals, and Chinese government adopts compulsory immunization measures for FMD. The adverse effects of FMD va...Foot-and-mouth disease (FMD) is an infectious and sometimes fatal viral disease that affects cloven-hoofed animals, and Chinese government adopts compulsory immunization measures for FMD. The adverse effects of FMD vaccine to pigs, cattle and goats have been reported increasingly frequent during the spring and autumn seasons when large numbers of farm livestock are vaccinated. The financial losses caused by vaccine adverse effects have been a serious concern for both farmers and primary prevention personnel. There are various causative factors reported to involve into adverse effect of FMD vaccine, including the inappropriate vaccine production, transportation and storage, livestock poor tolerance, and unqualified vaccinating manipulations. Symptomatic treatment and early drug prevention have a certain effect on the adverse effects. To analyze causes and propose countermeasures, in the current study possible reasons during the production and processing procedures of inactivated FMD vaccine were reviewed and corresponding countermeasures were recommended. The review may provide references for better use of vaccine to prevent FMD.展开更多
Foot-and-mouth disease virus (FMDV) is one of the most economically serious veterinary pathogens due to its negative effects on livestock and its highly infectious nature via a variety of transmission paths through or...Foot-and-mouth disease virus (FMDV) is one of the most economically serious veterinary pathogens due to its negative effects on livestock and its highly infectious nature via a variety of transmission paths through oral and inhalation routes. Measures to enhance outbreak management can be designed according to analytical results predicted by mathematical models for wind-borne dispersion, an important path of virus transmission. Accurate atmospheric dispersion models are useful tools for properly determining risk management plans, while inaccurate models may conversely lead to accidental loss in two possible ways. Overly strict measures, e.g., slaughter for too wide an area, can cause severe economic difficulties, including irreversible loss of business operations for a number of farms. On the contrary, inestimable loss potentially caused by lax controls is a persistent threat. In this paper, available modelling procedures for forecasting the spread of FMDV, which have been used since the 1970s, each having its advantages and limitations, are reviewed for the purpose of ensuring suitable application in various conditions of any future emergency cases.展开更多
Monoclonal antibodies (McAbs) 1A9 and 9F12 against Foot-and-mouth disease virus (FMDV) serotype O were produced by fusing SP2/0 myeloma cells with splenocyte from the mouse immunized with O/China99. Both McAbs reacted...Monoclonal antibodies (McAbs) 1A9 and 9F12 against Foot-and-mouth disease virus (FMDV) serotype O were produced by fusing SP2/0 myeloma cells with splenocyte from the mouse immunized with O/China99. Both McAbs reacted with O/China99 but not with Asia 1, as determined by immunohistochemistry assay. The microneutralization titer of the McAbs 1A9 and 9F12 were 640 and 1 280, respectively. Both McAbs contain kappa light chains, but the McAbs 1A9 and 9F12 were IgG1 and IgM, respectively. In order to define the McAbs binding epitopes, the reactivity of these McAbs against VP1, P20 and P14 were examined using indirect ELISA, the result showed that both McAbs reacted with VP1 and P20. McAbs may be used for further studies of vaccine, diagnostic methods, prophylaxis, etiological and immunological researches on FMDV.展开更多
To identify linear epitopes on the non-structural protein 3AB of foot-and-mouth disease virus (FMDV), BABL/c mice were immunized with the 3AB protein and splenocytes of BALB/c mice were fused with myeloma Sp2/0 cell...To identify linear epitopes on the non-structural protein 3AB of foot-and-mouth disease virus (FMDV), BABL/c mice were immunized with the 3AB protein and splenocytes of BALB/c mice were fused with myeloma Sp2/0 cells. Two hybridoma monoclonal antibodies (mAbs) cell lines against the 3AB protein of foot-and-mouth disease virus (FMDV) were obtained, named C6 and E7 respectively. The mieroneutralization titer was 1:1024 for mAb C6, and 1:512 for E7. Both mAbs contain kappa light chains, and were of subclass IgG2b. In order to define the mAbs binding epitopes, the reactivity of these mAbs against FMDV were examined by indirect ELISA. The results showed that both mAbs can react with FMDV, but had no cross-reactivity with Swine Vesicular Disease (SVD) antigens. The titers in abdomen liquor were 1:5×10^6 for C6 and 1:2×10^6 for E7. In conclusion, the mAbs obtained from this study are specific for the detection of FMDV, can be used for etiological and immunological researches on FMDV, and have potential use in diagnosis and future vaccine designs.展开更多
In order to develop an anti-FMDV A Type monoclonal antibody (mAb), BABL/c mice were immunized with FMDV A type. Monoclonal antibodies (mAbs) 7B 11 and 8H4 against Foot-and-mouth disease virus (FMDV) serotype A w...In order to develop an anti-FMDV A Type monoclonal antibody (mAb), BABL/c mice were immunized with FMDV A type. Monoclonal antibodies (mAbs) 7B 11 and 8H4 against Foot-and-mouth disease virus (FMDV) serotype A were produced by fusing SP2/0 myeloma cells with splenocyte from the mouse immunized with A/AV88. The microneutralization titer of the mAbs 7Bll and 8H4 were 1024 and 512, respectively. Both mAbs contain kappa light chainS, the mAbs were IgG1. In order to define the mAbs binding epitopes, the reactivity of these mAbs against A Type FMDV, were examined using indirect ELISA, the result showed that both mAbs reacted with A Type FMDV. These mAbs may be used for further vaccine studies, diagnostic methods, prophylaxis, etiological and immunological research on FMDV. Characterization of these ncindicated that prepared anti-FMDV A mAbs had no cross-reactivity with Swine Vesicular Disease (SVD) or FMDV O, Asial and C Type antigens. Their titers in abdomen liquor were 1:5×10^6 and 1:2×10^6, respectively. 7B 11 was found to be of subtype IgGb 8H4 was classified as IgG2b subtype. The mAbs prepared in this study, are specific for detection of FMDV serotype A, and is potentially useful for pen-side diagnosis.展开更多
The paper was to obtain the VP1 protein of FMDV serotype A with high activity. With recombinant plasmid pMD19A-T-vp1 as the tem- plate, vpl gene fragment amplified by PCR was connected into prokaryotic expression vect...The paper was to obtain the VP1 protein of FMDV serotype A with high activity. With recombinant plasmid pMD19A-T-vp1 as the tem- plate, vpl gene fragment amplified by PCR was connected into prokaryotic expression vector pET28a to construct recombinant plasmid pET-A-vpl. The E. coli BL21 (DE3) strain containing recombinant plasmid pET-A-vpl were induced by IPTG. SDS-PAGE showed that VP1 protein was ex- pressed in the form of inclusion body, and its molecular weight was about 29 ku. Based on the optimizing IPTG concentration and expression time, the largest expression of VP1 protein was induced by 0.3 mmol/L IPTG for 6 h at 37 ℃. Western-Blot analysis indicated that the expression of VP1 protein could be specifically recognized by positive serum of FMDV serotype A. ELISA test showed that VP1 inclusion body protein had high activity after purification by washing and renaturation by urea concentration gradient dialysis.展开更多
[Objective] The aim was to study the prokaryotic expression of P1 gene of foot-and-mouth disease virus(FMDV)type Asia 1and the preparation of its antiserum.[Method]The P1 gene of FMDV type Asia 1 was obtained by gen...[Objective] The aim was to study the prokaryotic expression of P1 gene of foot-and-mouth disease virus(FMDV)type Asia 1and the preparation of its antiserum.[Method]The P1 gene of FMDV type Asia 1 was obtained by gene cloning techniques,and then cloned into pET-32a(+)plasmid;subsequently the recombinant plasmid was transformed into E.coli BL21(DE3);after the IPTG induction and protein purification,SDS-PAGE analysis was carried out;the ultrasonic wave was use to lyse the cultivated recombinant strain,and after the isolation and purification,this fusion protein was utilized to immunize New Zealand rabbits so as to prepare P1 protein antiserum.[Result]The positive clones were obtained;SDS-PAGE result showed that the target band was appeared at 105 kD;Western blot analysis showed that the antisera could bind to the expressed P1 fusion protein specifically;the ELISA titer of the rabbit anti-FMDV-P1 sera was approximately 1∶5 120.[Conclusion]This study had provided foundations for FMDV serological diagnostic methods and genetically engineered vaccine.展开更多
Different non-established cultures were examined to find those that showed high sensitivity to Foot and Mouth Disease Virus (FMDV). Ovine kidney cultures showed high sensitivity to types A, O and C, and were suitable ...Different non-established cultures were examined to find those that showed high sensitivity to Foot and Mouth Disease Virus (FMDV). Ovine kidney cultures showed high sensitivity to types A, O and C, and were suitable to detect viral infection in samples of animal, as well as cell culture origin. The level of detection in this system was up to ten times higher than in BHK21 cells, which were commonly used for FMDV isolation and production. Viral production levels in ovine kidney cultures ranged from similar to twice as high as in BHK21. Ovine kidney cultures maintained these characteristics for at least 18 passages, allowing their use as an alternative system for FMDV diagnoses.展开更多
Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses t...Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/OflRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model. The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the peDNA3.1+ and pEGFP-N1 vectors to construct the VPI gene cassettes. The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector, which solely expressed the GFP protein. Six mice groups were respectively immunized by the sub-cloned pcDNA3.1+-VP1 gene cassette as the DNA vaccine, DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together, conventional vaccine, PBS (as negative control), pcDNA3.1+ vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group). Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together, the DNA vaccine alone and the conventional inactivated vaccine (P〈0.05). Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone, but this response was the most for the conventional vaccine group. However, induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine, but T-cell proliferation and IFN-? concentration were the most in DNA vaccine with the GMCSF gene. Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene, showed protective neutralizing antibody response and the most Thl cellular immunity.展开更多
Two full-length genomic cDNA clones, pTA/FMDV and pCA/FMDV, were constructed that contained three point-mutants [A174G and A308G (not present in pTA/FMDV); T1029G] in the genome compared with the wild type A/AKT/58 st...Two full-length genomic cDNA clones, pTA/FMDV and pCA/FMDV, were constructed that contained three point-mutants [A174G and A308G (not present in pTA/FMDV); T1029G] in the genome compared with the wild type A/AKT/58 strain of foot-and-mouth disease virus. These two viruses were rescued by co-transfection of pCA/FMDV with pCT7RNAP, which can express T7 RNA polymerase in BHK-21 cell-lines, or by transfection of the in vitro transcribed RNA. Their biological properties were analyzed for their antigenicity, virulence in suckling-mice (LD50) and growth kinetics in BHK-21 cells. The in vivo rescued viruses showed high pathogenicity for 3-day-old unweaned mice (LD50=10?7.5). However, the in vitro transcribed RNA derived from pTA/FMDV had lower pathogenicity for suckling-mice (LD50=10?6), and the in vivo transcribed RNA recovered from pCA/FMDV co-transfected with pCT7RNAP showed no significant differences from the wild type virus. These data showed that recovery of the infectious foot-and-mouth disease virus directly from the use of in vivo techniques was better than from in vitro methods. Furthermore, the reverse genetic procedure technique was simplified to a faster one-step procedure based on co-transfection with pCT7RNAP. These results suggest that in vivo RNA tran- scripts may be more valuable for engineering recombinant foot-and-mouth disease virus than in vitro RNA transcripts, and may contribute to further understanding of the biological properties, such as replication, maturation and quasispecies, of the foot-and-mouth disease virus.展开更多
Foot-and-mouth disease virus(FMDV)can infect domestic and wild cloven-hoofed animals.The non-structural protein 3D plays an important role in FMDV replication and pathogenesis.However,the interaction partners of 3D,an...Foot-and-mouth disease virus(FMDV)can infect domestic and wild cloven-hoofed animals.The non-structural protein 3D plays an important role in FMDV replication and pathogenesis.However,the interaction partners of 3D,and the effects of those interactions on FMDV replication,remain incompletely elucidated.In the present study,using the yeast two-hybrid system,we identified a porcine cell protein,DEAD-box RNA helicase 1(DDX1),which interacted with FMDV 3D.The DDX1-3D interaction was further confirmed by co-immunoprecipitation experiments and an indirect immunofluorescence assay(IFA)in porcine kidney 15(PK-15)cells.DDX1 was reported to either inhibit or facilitate viral replication and regulate host innate immune responses.However,the roles of DDX1 during FMDV infection remain unclear.Our results revealed that DDX1 inhibited FMDV replication in an ATPase/helicase activity-dependent manner.In addition,DDX1 stimulated IFN-p activation in FMDV-infected cells.Together,our results expand the body of knowledge regarding the role of DDX1 in FMDV infection.展开更多
基金Supported by the Science and Technology Foundation from Science&Technology Department of Guangxi Autonomous Region(0779001)~~
文摘According to the complete genome of foot-and-mouth disease virus(FMDV)type O,a pair of special primers was designed to amplify VP1 gene.The VP1 gene was amplified by RT-PCR and subsequently inserted into the expression vector pGEX-6p-1 and induced by IPTG.Then SDS-PAGE showed the expressed protein was 51 kD in molecular weight.Then the product was purified by GSTrap FF columns.The product was detected through Western-blot that showed the protein has antigenicity.It provided fundamental data and materials for further investigation on diagnosis method of FMDV.
基金Project (No. PSF/Res/P-AU/Bio (246)) supported by Pakistan Sci-ence Foundation (PSF)
文摘In this experiment conducted to study the inactivation dynamics of infectious bursal disease virus (IBDV) by binary ethylenimine (BEI) in comparison with formalin, IBDV was isolated from the bursa of infected chickens and its confirmation was done by agar gel precipitation test. Viral suspensions were subjected to inactivation with BEI and formalin for pre-set time in- tervals. BEI was employed at concentrations of 0.001 and 0.002 mol/L while formalin was used at 0.1% and 0.2%. Sampling was done at 6, 12, 24, 36 and 48 h of incubation and samples were tested for their inactivation status in 9-day-old embryonated eggs and 3-week-old broiler chickens. IBDV was completely inactivated by 0.001 and 0.002 mol/L BEI after 36 h of incubation at 37℃, whereas formalin at 0. 1% and 0.2% concentrations inactivated IBDV in 24 h.
基金jointly supported by grants from National Natural Science Foundation of China(No.31060343)Innovative Talents in Science and Technology Project of Yunnan Province(2011HB035)
文摘An amino acid mutation(R127→I) in the 3A non-structural protein of an FMDV serotype Asia1 rabbit-attenuated ZB strain was previously found after attenuation of the virus. To explore the effects of this mutation on viral replication and infection, the amino acid residue isoleucine(I) was changed to arginine(R) in the infectious cDNA clone of the rabbit-attenuated ZB strain by sitedirected mutagenesis, and the R127-mutated virus was rescued. BHK monolayer cells and suckling mice were inoculated with the R127-mutated virus to test its growth property and pathogenicity, respectively. The effects of the R127 mutation on viral replication and virulence were analyzed. The data showed that there was a slight difference in plaque morphology between the R127-mutated and wild-type viruses. The growth rate of the mutated virus was lower in BHK-21 cells and its virulence in suckling mice was also attenuated. This study indicates that the R127 mutation in 3A may play an important role in FMDV replication in vitro and in pathogenicity in suckling mice.
基金supported by grants from the National Natural Science Foundation of China(No. 31101801)
文摘Infection by foot-and-mouth disease virus(FMDV) is triggered by the acidic pH in endosomes after virus uptake by receptor-mediated endocytosis. However, dissociation of the FMDV 146S particle in mildly acidic conditions renders inactivated foot-and-mouth disease(FMD) vaccines much less effective. Type Asia1 FMDV mutants with increased resistance to acid inactivation were selected to study the molecular basis of viral resistance to acid-induced disassembly and improve the acid stability of FMDV. Sequencing of capsid-coding regions revealed four amino acid replacements(VP1 N17D, VP2 H145Y, VP2 G192D, and VP3 K153E) in the viral population of the acid-selected 10th passage. We performed single or combined mutagenesis using a reverse genetic system, and our results provide direct experimental evidence that VP2 H145Y or VP1 N17D substitution confers an acid-resistant phenotype to type Asia1 FMDV.
文摘In this study, the coding region of type O FMDV capsid protein VP1 and a series of codon optimized DNA sequences coding for VP1 amino acid residues 141-160 (epitopel), tandem repeat 200-213 (epitope2 (+2)) and the combination of two epitopes (epitopel-2) was genetically cloned into the prokaryotic expression vector PPRoExHTb and pGEX4T-1, respectively. VP1 and the fused epitopes GST-E1, GST-E2 (+2) and GST-E1-2 were successfully solubly expressed in the cytoplasm of Escherichia coli and Western blot analysis demonstrated they retained antigenicity. Indirect VP1-ELISA and epitope ELISAs were subsequently developed to screen a panel of 80 field pig sera using LPB-ELISA as a standard test. For VP1-ELISA and all the epitope ELISAs, there were clear distinctions between the FMDV-positive and the FMDV-negative samples. Cross-reactions with pig sera positive to the viruses of swine vesicular disease virus that produce clinically indistinguishable syndromes in pigs or guinea pig antisera to FMDV strains of type A, C and Asia1 did not occur. The relative sensitivity and specificity for the GST-E1 ELISA, GST-E2 (+2), GST-E1-2 ELISA and VP1-ELISA in comparison with LPB-ELISA were 93.3% and 85.0%, 95.0% and 90%, 100% and 81.8%, 96.6% and 80.9% respectively. This study shows the potential use of the aforementioned epitopes as alternatives to the complex antigens used in current detection for antibody to FMDV structural proteins.
文摘The complete genomic sequence of foot-and-mouth disease virus (FMDV) Chinese strain OH/CHA/99 was determined. The 8040 nt sequence and the deduced amino acid sequence werecompared with FMDV sequences published. The results showed that OH/CHA/99 shared highersequence homology with OTYTW/97, indicating their close genetic relationship. However,the strain had lower sequence identity with O1/Kaufbeuren/66 strain. Besides, largedeletions in 3A coding region were observed in OH/CHA/99. It was shown that the poly (A)tail of OH/CHA/99 had 56 As at least.
基金State Science and Technology Support Program (2006DAD06A03)Hi-tech Research and Development Program of China 863 (2006AA10A204).
文摘To investigate the security of semen biologically, 15 bull semen samples were collected (of which 5 exhibited clinical signs of Foot-and-mouth disease) and identified by RT-PCR and virus isolation. The results indicated that the semen of the infected bulls were contaminated by Foot-and-mouth disease virus (FMDV), but FMDV was not detected in semen samples from those bulls not showing clinical signs of Foot-and-mouth disease (FMD). This is the first report of the presence of FMDV in bull semen due to natural infection in China. The analysis of the partial sequence of the VP1 gene showed that the virus strain isolated from semen has 97.9% identity with the virus isolated from vesicular liquid of infected bulls showing typical signs of FMD and belonged to the same gene sub-group.
文摘Foot-and-mouth disease (FMD) is an infectious and sometimes fatal viral disease that affects cloven-hoofed animals, and Chinese government adopts compulsory immunization measures for FMD. The adverse effects of FMD vaccine to pigs, cattle and goats have been reported increasingly frequent during the spring and autumn seasons when large numbers of farm livestock are vaccinated. The financial losses caused by vaccine adverse effects have been a serious concern for both farmers and primary prevention personnel. There are various causative factors reported to involve into adverse effect of FMD vaccine, including the inappropriate vaccine production, transportation and storage, livestock poor tolerance, and unqualified vaccinating manipulations. Symptomatic treatment and early drug prevention have a certain effect on the adverse effects. To analyze causes and propose countermeasures, in the current study possible reasons during the production and processing procedures of inactivated FMD vaccine were reviewed and corresponding countermeasures were recommended. The review may provide references for better use of vaccine to prevent FMD.
文摘Foot-and-mouth disease virus (FMDV) is one of the most economically serious veterinary pathogens due to its negative effects on livestock and its highly infectious nature via a variety of transmission paths through oral and inhalation routes. Measures to enhance outbreak management can be designed according to analytical results predicted by mathematical models for wind-borne dispersion, an important path of virus transmission. Accurate atmospheric dispersion models are useful tools for properly determining risk management plans, while inaccurate models may conversely lead to accidental loss in two possible ways. Overly strict measures, e.g., slaughter for too wide an area, can cause severe economic difficulties, including irreversible loss of business operations for a number of farms. On the contrary, inestimable loss potentially caused by lax controls is a persistent threat. In this paper, available modelling procedures for forecasting the spread of FMDV, which have been used since the 1970s, each having its advantages and limitations, are reviewed for the purpose of ensuring suitable application in various conditions of any future emergency cases.
基金The national high technology research and development program of China 863 (2006AA10A204)The national science and technology pillar program (2006BAD06A17)
文摘Monoclonal antibodies (McAbs) 1A9 and 9F12 against Foot-and-mouth disease virus (FMDV) serotype O were produced by fusing SP2/0 myeloma cells with splenocyte from the mouse immunized with O/China99. Both McAbs reacted with O/China99 but not with Asia 1, as determined by immunohistochemistry assay. The microneutralization titer of the McAbs 1A9 and 9F12 were 640 and 1 280, respectively. Both McAbs contain kappa light chains, but the McAbs 1A9 and 9F12 were IgG1 and IgM, respectively. In order to define the McAbs binding epitopes, the reactivity of these McAbs against VP1, P20 and P14 were examined using indirect ELISA, the result showed that both McAbs reacted with VP1 and P20. McAbs may be used for further studies of vaccine, diagnostic methods, prophylaxis, etiological and immunological researches on FMDV.
基金State Key Projects of Transgene Program(No.2011ZX08011-0042009ZX08007-008B2009ZX08006-002B)
文摘To identify linear epitopes on the non-structural protein 3AB of foot-and-mouth disease virus (FMDV), BABL/c mice were immunized with the 3AB protein and splenocytes of BALB/c mice were fused with myeloma Sp2/0 cells. Two hybridoma monoclonal antibodies (mAbs) cell lines against the 3AB protein of foot-and-mouth disease virus (FMDV) were obtained, named C6 and E7 respectively. The mieroneutralization titer was 1:1024 for mAb C6, and 1:512 for E7. Both mAbs contain kappa light chains, and were of subclass IgG2b. In order to define the mAbs binding epitopes, the reactivity of these mAbs against FMDV were examined by indirect ELISA. The results showed that both mAbs can react with FMDV, but had no cross-reactivity with Swine Vesicular Disease (SVD) antigens. The titers in abdomen liquor were 1:5×10^6 for C6 and 1:2×10^6 for E7. In conclusion, the mAbs obtained from this study are specific for the detection of FMDV, can be used for etiological and immunological researches on FMDV, and have potential use in diagnosis and future vaccine designs.
基金State Key Projects of Transgene Program(2011ZX08011-0042009ZX 08007- 008B2009ZX08006-002B)
文摘In order to develop an anti-FMDV A Type monoclonal antibody (mAb), BABL/c mice were immunized with FMDV A type. Monoclonal antibodies (mAbs) 7B 11 and 8H4 against Foot-and-mouth disease virus (FMDV) serotype A were produced by fusing SP2/0 myeloma cells with splenocyte from the mouse immunized with A/AV88. The microneutralization titer of the mAbs 7Bll and 8H4 were 1024 and 512, respectively. Both mAbs contain kappa light chainS, the mAbs were IgG1. In order to define the mAbs binding epitopes, the reactivity of these mAbs against A Type FMDV, were examined using indirect ELISA, the result showed that both mAbs reacted with A Type FMDV. These mAbs may be used for further vaccine studies, diagnostic methods, prophylaxis, etiological and immunological research on FMDV. Characterization of these ncindicated that prepared anti-FMDV A mAbs had no cross-reactivity with Swine Vesicular Disease (SVD) or FMDV O, Asial and C Type antigens. Their titers in abdomen liquor were 1:5×10^6 and 1:2×10^6, respectively. 7B 11 was found to be of subtype IgGb 8H4 was classified as IgG2b subtype. The mAbs prepared in this study, are specific for detection of FMDV serotype A, and is potentially useful for pen-side diagnosis.
基金Supported by NSFC-Joint Personnel Training Fund of Henan Province(U1204327)Special Fund for Construction of Provincial Key Laboratory in Henan Province(122300413217)
文摘The paper was to obtain the VP1 protein of FMDV serotype A with high activity. With recombinant plasmid pMD19A-T-vp1 as the tem- plate, vpl gene fragment amplified by PCR was connected into prokaryotic expression vector pET28a to construct recombinant plasmid pET-A-vpl. The E. coli BL21 (DE3) strain containing recombinant plasmid pET-A-vpl were induced by IPTG. SDS-PAGE showed that VP1 protein was ex- pressed in the form of inclusion body, and its molecular weight was about 29 ku. Based on the optimizing IPTG concentration and expression time, the largest expression of VP1 protein was induced by 0.3 mmol/L IPTG for 6 h at 37 ℃. Western-Blot analysis indicated that the expression of VP1 protein could be specifically recognized by positive serum of FMDV serotype A. ELISA test showed that VP1 inclusion body protein had high activity after purification by washing and renaturation by urea concentration gradient dialysis.
基金Supported by National Transgenic Major Program of China(2009ZX08007-006B)the National Natural Science Foundation of China(31072160)+2 种基金Science and Technique Foundation of Shandong Province(2009GG20002032)Natural Science Foundation ofShandong Province(Y2008D20)an Open Issue of State Key Laboratory of Veterinary Biotechnology Fund(SKLVBF200806)~~
文摘[Objective] The aim was to study the prokaryotic expression of P1 gene of foot-and-mouth disease virus(FMDV)type Asia 1and the preparation of its antiserum.[Method]The P1 gene of FMDV type Asia 1 was obtained by gene cloning techniques,and then cloned into pET-32a(+)plasmid;subsequently the recombinant plasmid was transformed into E.coli BL21(DE3);after the IPTG induction and protein purification,SDS-PAGE analysis was carried out;the ultrasonic wave was use to lyse the cultivated recombinant strain,and after the isolation and purification,this fusion protein was utilized to immunize New Zealand rabbits so as to prepare P1 protein antiserum.[Result]The positive clones were obtained;SDS-PAGE result showed that the target band was appeared at 105 kD;Western blot analysis showed that the antisera could bind to the expressed P1 fusion protein specifically;the ELISA titer of the rabbit anti-FMDV-P1 sera was approximately 1∶5 120.[Conclusion]This study had provided foundations for FMDV serological diagnostic methods and genetically engineered vaccine.
文摘Different non-established cultures were examined to find those that showed high sensitivity to Foot and Mouth Disease Virus (FMDV). Ovine kidney cultures showed high sensitivity to types A, O and C, and were suitable to detect viral infection in samples of animal, as well as cell culture origin. The level of detection in this system was up to ten times higher than in BHK21 cells, which were commonly used for FMDV isolation and production. Viral production levels in ovine kidney cultures ranged from similar to twice as high as in BHK21. Ovine kidney cultures maintained these characteristics for at least 18 passages, allowing their use as an alternative system for FMDV diagnoses.
文摘Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/OflRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model. The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the peDNA3.1+ and pEGFP-N1 vectors to construct the VPI gene cassettes. The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector, which solely expressed the GFP protein. Six mice groups were respectively immunized by the sub-cloned pcDNA3.1+-VP1 gene cassette as the DNA vaccine, DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together, conventional vaccine, PBS (as negative control), pcDNA3.1+ vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group). Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together, the DNA vaccine alone and the conventional inactivated vaccine (P〈0.05). Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone, but this response was the most for the conventional vaccine group. However, induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine, but T-cell proliferation and IFN-? concentration were the most in DNA vaccine with the GMCSF gene. Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene, showed protective neutralizing antibody response and the most Thl cellular immunity.
基金Supported by the National Key Basic Research Program of China (Grant No. 2005CB523201)National High-Tech Research and Development Program of China (Grant No. 2006BAD06A03)
文摘Two full-length genomic cDNA clones, pTA/FMDV and pCA/FMDV, were constructed that contained three point-mutants [A174G and A308G (not present in pTA/FMDV); T1029G] in the genome compared with the wild type A/AKT/58 strain of foot-and-mouth disease virus. These two viruses were rescued by co-transfection of pCA/FMDV with pCT7RNAP, which can express T7 RNA polymerase in BHK-21 cell-lines, or by transfection of the in vitro transcribed RNA. Their biological properties were analyzed for their antigenicity, virulence in suckling-mice (LD50) and growth kinetics in BHK-21 cells. The in vivo rescued viruses showed high pathogenicity for 3-day-old unweaned mice (LD50=10?7.5). However, the in vitro transcribed RNA derived from pTA/FMDV had lower pathogenicity for suckling-mice (LD50=10?6), and the in vivo transcribed RNA recovered from pCA/FMDV co-transfected with pCT7RNAP showed no significant differences from the wild type virus. These data showed that recovery of the infectious foot-and-mouth disease virus directly from the use of in vivo techniques was better than from in vitro methods. Furthermore, the reverse genetic procedure technique was simplified to a faster one-step procedure based on co-transfection with pCT7RNAP. These results suggest that in vivo RNA tran- scripts may be more valuable for engineering recombinant foot-and-mouth disease virus than in vitro RNA transcripts, and may contribute to further understanding of the biological properties, such as replication, maturation and quasispecies, of the foot-and-mouth disease virus.
基金supported by grants from the National Natural Science Foundation of China (Nos. 31302106, 31260616, and 31602035)the National Key Research and Development Program of China (Nos. 2016YFD0500901 and 2017YFD0500903)
文摘Foot-and-mouth disease virus(FMDV)can infect domestic and wild cloven-hoofed animals.The non-structural protein 3D plays an important role in FMDV replication and pathogenesis.However,the interaction partners of 3D,and the effects of those interactions on FMDV replication,remain incompletely elucidated.In the present study,using the yeast two-hybrid system,we identified a porcine cell protein,DEAD-box RNA helicase 1(DDX1),which interacted with FMDV 3D.The DDX1-3D interaction was further confirmed by co-immunoprecipitation experiments and an indirect immunofluorescence assay(IFA)in porcine kidney 15(PK-15)cells.DDX1 was reported to either inhibit or facilitate viral replication and regulate host innate immune responses.However,the roles of DDX1 during FMDV infection remain unclear.Our results revealed that DDX1 inhibited FMDV replication in an ATPase/helicase activity-dependent manner.In addition,DDX1 stimulated IFN-p activation in FMDV-infected cells.Together,our results expand the body of knowledge regarding the role of DDX1 in FMDV infection.