The failure mechanism of tunnels crossing faults is a critical issue for tunnels located in seismically active regions. This study aims to investigate the nonlinear response of rock tunnels crossing inactive faults un...The failure mechanism of tunnels crossing faults is a critical issue for tunnels located in seismically active regions. This study aims to investigate the nonlinear response of rock tunnels crossing inactive faults under obliquely incident seismic P waves. Based on the equivalent nodal force method together with the viscous-spring boundary, an incident method for the site, which contains fault and is subjected to obliquely incident seismic P waves, is developed first. Then, based on the proposed incident method, the nonlinear response and the failure process of the tunnel crossing inactive fault are numerically studied. The numerical results show that the failure mechanism of the tunnel crossing inactive fault can be attributed to the combined action of the seismic waves and its associated fault slippage. Finally, parameter studies are conducted to investigate the effects of the wave impedance ratio of the fault to the surrounding rock and the incident angle of P waves. By the parameter analysis, it can be concluded that:(1) with decreasing the wave impedance ratio of the fault to the surrounding rock, the seismic response of the tunnel increases significantly;(2) the seismic response of the tunnel increases first and then decreases with the increasing of the incident angle of P waves. This study offers the insight for further research on the seismic stability of tunnels crossing inactive faults.展开更多
基金This research was supported by the Beijing Natural Science Foundation Program(No.JQ19029)the National Natural Science Foundation of China(No.51421005)the Ministry of Education Innovation Team of China(No.IRT_17R03)。
文摘The failure mechanism of tunnels crossing faults is a critical issue for tunnels located in seismically active regions. This study aims to investigate the nonlinear response of rock tunnels crossing inactive faults under obliquely incident seismic P waves. Based on the equivalent nodal force method together with the viscous-spring boundary, an incident method for the site, which contains fault and is subjected to obliquely incident seismic P waves, is developed first. Then, based on the proposed incident method, the nonlinear response and the failure process of the tunnel crossing inactive fault are numerically studied. The numerical results show that the failure mechanism of the tunnel crossing inactive fault can be attributed to the combined action of the seismic waves and its associated fault slippage. Finally, parameter studies are conducted to investigate the effects of the wave impedance ratio of the fault to the surrounding rock and the incident angle of P waves. By the parameter analysis, it can be concluded that:(1) with decreasing the wave impedance ratio of the fault to the surrounding rock, the seismic response of the tunnel increases significantly;(2) the seismic response of the tunnel increases first and then decreases with the increasing of the incident angle of P waves. This study offers the insight for further research on the seismic stability of tunnels crossing inactive faults.