Based on the actual situation of the establishment of the incentive system for human resource management in universities,the constituent elements and relevant principles of the incentive system for human resources in ...Based on the actual situation of the establishment of the incentive system for human resource management in universities,the constituent elements and relevant principles of the incentive system for human resources in universities are expounded on,the current situation of the actual needs of the faculty and staff in universities is studied and analyzed,and practical plans for establishing the concept and implementing the incentive system in universities are proposed,with relevant incentive mechanisms for human resource management focusing on differentiated needs developed for reference.展开更多
As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems rema...As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems remain, including privacy breaches, imbalances in payment, and inequitable distribution.These shortcomings let devices reluctantly contribute relevant data to, or even refuse to participate in FL. Therefore, in the application of FL, an important but also challenging issue is to motivate as many participants as possible to provide high-quality data to FL. In this paper, we propose an incentive mechanism for FL based on the continuous zero-determinant(CZD) strategies from the perspective of game theory. We first model the interaction between the server and the devices during the FL process as a continuous iterative game. We then apply the CZD strategies for two players and then multiple players to optimize the social welfare of FL, for which we prove that the server can keep social welfare at a high and stable level. Subsequently, we design an incentive mechanism based on the CZD strategies to attract devices to contribute all of their high-accuracy data to FL.Finally, we perform simulations to demonstrate that our proposed CZD-based incentive mechanism can indeed generate high and stable social welfare in FL.展开更多
Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients m...Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate,but because the clients are independent,the central server cannot fully control their behavior.The central server has no way of knowing the correctness of the model parameters provided by each client in this round,so clients may purposefully or unwittingly submit anomalous data,leading to abnormal behavior,such as becoming malicious attackers or defective clients.To reduce their negative consequences,it is crucial to quickly detect these abnormalities and incentivize them.In this paper,we propose a Federated Learning framework for Detecting and Incentivizing Abnormal Clients(FL-DIAC)to accomplish efficient and security federated learning.We build a detector that introduces an auto-encoder for anomaly detection and use it to perform anomaly identification and prevent the involvement of abnormal clients,in particular for the anomaly client detection problem.Among them,before the model parameters are input to the detector,we propose a Fourier transform-based anomaly data detectionmethod for dimensionality reduction in order to reduce the computational complexity.Additionally,we create a credit scorebased incentive structure to encourage clients to participate in training in order tomake clients actively participate.Three training models(CNN,MLP,and ResNet-18)and three datasets(MNIST,Fashion MNIST,and CIFAR-10)have been used in experiments.According to theoretical analysis and experimental findings,the FL-DIAC is superior to other federated learning schemes of the same type in terms of effectiveness.展开更多
Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various ...Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs.展开更多
Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is desig...Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is designing a safe,efficient,and transparent trading model and operating mechanism.In this study,we consider a P2P trading environment based on blockchain technology,where prosumers can submit bids or offers without knowing the reports of others.We propose an Arrow-d’Aspremont-Gerard-Varet(AGV)-based mechanism to encourage prosumers to submit their real reserve price and determine the P2P transaction price.We demonstrate that the AGV mechanism can achieve Bayesian incentive compatibility and budget balance.Kernel density estimation(KDE)is used to derive the prior distribution from the historical bid/offer information of the agents.Case studies are carried out to analyze and evaluate the proposed mechanism.Simulation results verify the effectiveness of the proposed mechanism in guiding agents to report the true reserve price while maximizing social welfare.Moreover,we discuss the advantages of budget balance for decentralized trading by comparing the Vickrey-Clarke-Groves(VCG)and AGV mechanisms.展开更多
BitTorrent is a very popular Peer-to-Peer file sharing system, which adopts a set of incentive mechanisms to encourage contribution and prevent free-riding. However, we find that BitTorrent’s incentive mechanism can ...BitTorrent is a very popular Peer-to-Peer file sharing system, which adopts a set of incentive mechanisms to encourage contribution and prevent free-riding. However, we find that BitTorrent’s incentive mechanism can prevent free-riding effectively in a system with a relatively low number of seeds, but may fail in producing a disincentive for free-riding in a system with a high number of seeds. The reason is that BitTorrent does not provide effective mechanisms for seeds to guard against free-riding. Therefore, we propose a seed bandwidth allocation strategy for the BitTorrent system to reduce the effect of seeds on free-riding. Our target is that a downloader which provides more service to the system will be granted a higher benefit than downloaders which provide lower service when some downloaders ask for downloading file from a seed. Finally, simulation results are given, which validate the effectiveness of the proposed strategy.展开更多
Alternative Land Use Services (ALUS) is an incentive-based program established in Canada to pay farmers for their voluntary delivery of ecosystem services (ES). All seven ALUS programs across the country were examined...Alternative Land Use Services (ALUS) is an incentive-based program established in Canada to pay farmers for their voluntary delivery of ecosystem services (ES). All seven ALUS programs across the country were examined using a standardized case-study approach based on site visits, reading internal documents, attending program meetings, and engaging in semi-structured interviews with program administrators, participating farmers, and advisory board members. Direct content analysis was used to highlight recurrent themes and emerging lessons in relation to the salient particulars of program physical location, administration framework, delivery of ES, and development and receipt by communities. Our three major findings are: 1) Overall, ALUS has been judged by participants to be a very successful program, whose strength is that it is completely voluntary, non-permanent, and readily adaptable to each location’s environmental conditions, economic funding base, and cultural milieu. 2) One serious shortcoming of all ALUS programs is a general lack of quantifiable data on their ability to increase ES. Instead, environmental benefits are either assumed or based on the idea that the areal extent of enrolled land is the sole measure of its environmental worth. 3) It may be that the social impact of ALUS is its greatest success. In this regard, for farmers, it is the process of engaging in land-use decision making and the recognition of their role as environmental stewards that is a bigger motivation for participating in an ALUS program than the modest financial incentives which they receive.展开更多
The role played by Payments for ecosystem services (PES) in promoting land use interventions is increasingly being recognized as an important instrument for changing land use management worldwide. Despite the increase...The role played by Payments for ecosystem services (PES) in promoting land use interventions is increasingly being recognized as an important instrument for changing land use management worldwide. Despite the increase, adoption of land use interventions promoted by PES and factors influencing it are not well understood. This study was carried out to assess the adoption of land use interventions promoted by PES scheme four years after its implementation in the Uluguru Mountains, Tanzania. The specific objectives of this study were to assess the adoption and factors that influenced it. The study employed questionnaire survey method to collect data from 219 households selected randomly. Focus group discussions and key informant interviews were also conducted to complement information obtained through questionnaire surveys. Descriptive and inferential statistical analyses were employed. Binary logistic regression was used to analyse quantitative data obtained, while content analysis was applied to qualitative data. Results revealed that during the project implementation, 40% of the households did not adopt any of the promoted interventions. Unexpectedly, four years after the project ended, every household sampled had adopted the interventions. Households headed by younger heads and those with land ownership, households which received PES incentives and lived for a long time in the same area and those with more labour force and access to extension services were found to have adopted more interventions (p ≤ 0.05). Thus, the study concludes that socioeconomic characteristics, agricultural extension services and incentives initially provided to farmers are key factors influencing the adoption of land use interventions. Therefore, it is recommended to the government that it should support farmers to get land tenure and to provide them with more incentives to improve their farms through adopting technologies.展开更多
As 5G becomes commercial,researchers have turned attention toward the Sixth-Generation(6G)network with the vision of connecting intelligence in a green energy-efficient manner.Federated learning triggers an upsurge of...As 5G becomes commercial,researchers have turned attention toward the Sixth-Generation(6G)network with the vision of connecting intelligence in a green energy-efficient manner.Federated learning triggers an upsurge of green intelligent services such as resources orchestration of communication infrastructures while preserving privacy and increasing communication efficiency.However,designing effective incentives in federated learning is challenging due to the dynamic available clients and the correlation between clients'contributions during the learning process.In this paper,we propose a dynamic incentive and reputation mechanism to improve energy efficiency and training performance of federated learning.The proposed incentive based on the Stackelberg game can timely adjust optimal energy consumption with changes in available clients during federated learning.Meanwhile,clients’contributions in reputation management are formulated based on the cooperative game to capture the correlation between tasks,which satisfies availability,fairness,and additivity.The simulation results show that the proposed scheme can significantly motivate high-performance clients to participate in federated learning and improve the accuracy and energy efficiency of the federated learning model.展开更多
Crowdsensing,as a data collection method that uses the mobile sensing ability of many users to help the public collect and extract useful information,has received extensive attention in data collection.Since crowdsens...Crowdsensing,as a data collection method that uses the mobile sensing ability of many users to help the public collect and extract useful information,has received extensive attention in data collection.Since crowdsensing relies on user equipment to consume resources to obtain information,and the quality and distribution of user equipment are uneven,crowdsensing has problems such as low participation enthusiasm of participants and low quality of collected data,which affects the widespread use of crowdsensing.This paper proposes to apply the blockchain to crowdsensing and solve the above challenges by utilizing the characteristics of the blockchain,such as immutability and openness.An architecture for constructing a crowdsensing incentive mechanism under distributed incentives is proposed.A multi-attribute auction algorithm and a k-nearest neighbor-based sensing data quality determination algorithm are proposed to support the architecture.Participating users upload data,determine data quality according to the algorithm,update user reputation,and realize the selection of perceived data.The process of screening data and updating reputation value is realized by smart contracts,which ensures that the information cannot be tampered with,thereby encouraging more users to participate.Results of the simulation show that using two algorithms can well reflect data quality and screen out malicious data.With the help of blockchain performance,the architecture and algorithm can achieve decentralized storage and tamper-proof information,which helps to motivate more users to participate in perception tasks and improve data quality.展开更多
Background:Researchers have a higher risk of anxiety and depression than the general population,so it is important to promote researchers’mental health.Method:Based on the data from 3210 global researchers surveyed b...Background:Researchers have a higher risk of anxiety and depression than the general population,so it is important to promote researchers’mental health.Method:Based on the data from 3210 global researchers surveyed by the journal Nature in 2021,confirmatory factor analysis,OLS regression and other regressions were used to explore the research incentive dimensions and their effects on researchers’mental health.Results:(1)Material incentive factors,work-family life balance factors,good organizational environment and spiritual motivation had significant positive effects on researchers’mental health.(2)The spiritual motivation could better promote researchers’mental health than the other factors.(3)Heterogeneity analysis showed that material incentive factors and spiritual motivation created more significant stimulating effects on the mental health of humanities and social sciences researchers.Work-family life balance factors were more effective in promoting the mental health of the mid-career group and the overtime group.Conclusion:Application of the four research incentives resulted in lower likelihood of anxiety or depression among researchers,and special attention should be paid to the role of the spiritual motivation.In order to promote researchers’mental health,different incentives should be applied to different researcher groups to better improve researchers’mental health.展开更多
Various Cardiovascular Diseases (CVDs) can be catastrophic and can lead to irreversible outcomes. Despite improved interventions for CVD prevention awareness, there continues to be discussion and research on diet-rela...Various Cardiovascular Diseases (CVDs) can be catastrophic and can lead to irreversible outcomes. Despite improved interventions for CVD prevention awareness, there continues to be discussion and research on diet-related CVD and mortality without addressing the problem. Instead of prioritizing public guidelines and policies, policymakers should understand CVD and address population barriers to adhering to a healthy diet that decreases CVD risk. Therefore, this project aims to analyze federal healthy food incentive policies to promote healthy diet behaviors that reduce CVD risk. The method used was existing data for a comparative policy analysis that included a policy proposal process: phases of progression, measures, and a policy model with data collection and requirements. This analysis compared a current federal food incentive program versus the proposed program. Results of the final analysis derived from the literature review and collected data stated consuming foods from the Mediterranean and other low-fat and low-salt diets reduced CVD risks that also reduced other risks secondary to CVD, such as obesity, diabetes, and Cerebrovascular Accident (CVA). Comparatively, combined healthy food incentives and disincentives were more effective for improving healthy behaviors than, in some cases, even after incentives were removed. Therefore, this policy analysis supports the indication for incentive policy change. However, the lack of federal stakeholders’ response to key policy changes upon proposal submission may require other methods of proposal dissemination. Nonetheless, focusing analysis on various Food Insecurity Nutrition Incentive (FINI) programs instead of one, multi-state program, which may have improved analysis outcomes, was the lesson learned.展开更多
To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-...To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-agent framework,examines the dynamic game situation before the contract being signed,and develops four information models.The analysis reveals a Pareto improvement in the game’s Nash equilibrium when comparing the four models from the standpoint of the supply chain.In the complete information scenario,the service level of the service provider,the customer company’s incentive effectiveness,and the supply chain system’s ultimate profit are all maximized.Furthermore,a coordinating mechanism for disposable profit is built in this study.The paper then suggests a blockchain-based architecture for the service outsourcing process supervision and a distributed incentive mechanism under the coordination mechanism in response to the inadequacy of the principal-agent theory to address the information asymmetry problem and the moral hazard problem.The experiment’s end findings demonstrate that both parties can benefit from the coordination mechanism,and the application of blockchain technology can resolve these issues and effectively encourage service providers.展开更多
Objective To provide reference for improving Chinese innovative drug research and development incentive policies.Methods Based on investigating the incentive policies for innovative drug research and development in cl...Objective To provide reference for improving Chinese innovative drug research and development incentive policies.Methods Based on investigating the incentive policies for innovative drug research and development in clinical research,evaluation and approval in China,anti-tumor drugs were taken as the research object to discuss relevant policies from the perspective of clinical trials and registration approval based on data statistics and current situation analysis.Results and Conclusion Driven by a series of incentive policies for innovative drug R&D,great achievements have been made on anti-tumor drugs.However,there are problems such as concentration of drug targets,homogenization of clinical trials,and gaps in some drugs with large clinical needs.To improve incentive policies for innovative drug R&D,China should adhere to the orientation of clinical value,focusing on basic research and translational research,improving evaluation and approval capabilities,and establishing a sound ecosystem for innovative drugs.展开更多
The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle parti...The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.展开更多
Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satis...Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satisfaction,and ultimately promote sales and maximize profit for the manufacturer.By considering the combinations of corrective maintenance and preventive maintenance,totally three types of maintenance service contracts are designed.Moreover,attractive incentive and penalty mechanisms are adopted in the contracts.On this basis,Nash non-cooperative game is applied to analyze the revenue for both the manufacturer and customers,and so as to optimize the pricing mechanism of maintenance service contract and achieve a win-win situation.Numerical experiments are conducted.The results show that by taking into account the incentive and penalty mechanisms,the revenue can be improved for both the customers and manufacturer.Moreover,with the increase of repair rate and improvement factor in the preventive maintenance,the revenue will increase gradually for both the parties.展开更多
In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote clien...In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote client enterprises to complete outsourcing service actively. The incentive mechanism model of information security outsourcing is designed based on the principal-agent theory. Through analyzing the factors such as enterprise information assets value, invasion probability, information security environment, the agent cost coefficient and agency risk preference degree how to impact on the incentive mechanism, conclusions show that an enterprise information assets value and invasion probability have a positive influence on the fixed fee and the compensation coefficient; while information security environment, the agent cost coefficient and agency risk preference degree have a negative influence on the compensation coefficient. Therefore, the principal enterprises should reasonably design the fixed fee and the compensation coefficient to encourage information security outsourcing agency enterprises to the full extent.展开更多
This study conducted an in-depth analysis of the current tax preferential policies for small-scale individual businesses and compared them with similar policies both domestically and internationally,aiming to reveal t...This study conducted an in-depth analysis of the current tax preferential policies for small-scale individual businesses and compared them with similar policies both domestically and internationally,aiming to reveal the advantages and disadvantages of the current system.After examining the impact of these tax preferential policies on the economic status of individual business owners and the broader social economy,this article proposes a set of innovative tax preferential strategies based on theoretical foundations.By developing these innovative strategies and clarifying their implementation paths,the aim is to promote the sustainable and healthy development of small-scale individual businesses,thereby fostering comprehensive socio-economic progress.The conclusion of this study not only summarizes policy recommendations with practical significance but also provides theoretical support for the optimization and innovation of future related systems.展开更多
The ubiquity of mobile devices have promoted the prosperity of mobile crowd systems, which recruit crowds to contribute their resources for performing tasks. Yet, due to the various resource consumption, the crowds ma...The ubiquity of mobile devices have promoted the prosperity of mobile crowd systems, which recruit crowds to contribute their resources for performing tasks. Yet, due to the various resource consumption, the crowds may be reluctant to join and contribute information. Thus, the low participation level of crowds will be a hurdle that prevents the adoption of crowdsourcing. A critical challenge for these systems is how to design a proper mechanism such that the crowds spontaneously act as suppliers to contribute accurate information. Most of existing mechanisms ignore either the honesty of crowds or requesters respectively. In this paper, considering the honesty of both, we propose a game-based incentive mechanism, namely RTRC, to stimulate the crowds to contribute accurate information and to motivate the requesters to return accurate feedbacks. In addition, an evolutionary game is designed to model the dynamic of user-strategy selection. Specially, the replicator dynamic is applied to model the adaptation of strategy interactions taking into account the dynamic nature in time dependence and we also derive the evolutionarily stable strategies(ESSs) for users. Finally, empirical results over the simulations show that all the requesters and suppliers will select honest strategy to maximize their profit.展开更多
Both conflict and asymmetric information exist betweenthe telecom operators and the service provider,and result in illegal behaviors of the service provider.The relationship between the telecom operators andthe servic...Both conflict and asymmetric information exist betweenthe telecom operators and the service provider,and result in illegal behaviors of the service provider.The relationship between the telecom operators andthe service provider is classical multi-task principalagentrelationship. The multi-task incentive for theservice provider is considered in the design of theprincipal-agent incentive contract, and it is necessaryto add the multi-task incentive to the serviceproviders through the analysis of the risk costs andthe agency costs of this problem.展开更多
文摘Based on the actual situation of the establishment of the incentive system for human resource management in universities,the constituent elements and relevant principles of the incentive system for human resources in universities are expounded on,the current situation of the actual needs of the faculty and staff in universities is studied and analyzed,and practical plans for establishing the concept and implementing the incentive system in universities are proposed,with relevant incentive mechanisms for human resource management focusing on differentiated needs developed for reference.
基金partially supported by the National Natural Science Foundation of China (62173308)the Natural Science Foundation of Zhejiang Province of China (LR20F030001)the Jinhua Science and Technology Project (2022-1-042)。
文摘As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems remain, including privacy breaches, imbalances in payment, and inequitable distribution.These shortcomings let devices reluctantly contribute relevant data to, or even refuse to participate in FL. Therefore, in the application of FL, an important but also challenging issue is to motivate as many participants as possible to provide high-quality data to FL. In this paper, we propose an incentive mechanism for FL based on the continuous zero-determinant(CZD) strategies from the perspective of game theory. We first model the interaction between the server and the devices during the FL process as a continuous iterative game. We then apply the CZD strategies for two players and then multiple players to optimize the social welfare of FL, for which we prove that the server can keep social welfare at a high and stable level. Subsequently, we design an incentive mechanism based on the CZD strategies to attract devices to contribute all of their high-accuracy data to FL.Finally, we perform simulations to demonstrate that our proposed CZD-based incentive mechanism can indeed generate high and stable social welfare in FL.
基金supported by Key Research and Development Program of China (No.2022YFC3005401)Key Research and Development Program of Yunnan Province,China (Nos.202203AA080009,202202AF080003)+1 种基金Science and Technology Achievement Transformation Program of Jiangsu Province,China (BA2021002)Fundamental Research Funds for the Central Universities (Nos.B220203006,B210203024).
文摘Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate,but because the clients are independent,the central server cannot fully control their behavior.The central server has no way of knowing the correctness of the model parameters provided by each client in this round,so clients may purposefully or unwittingly submit anomalous data,leading to abnormal behavior,such as becoming malicious attackers or defective clients.To reduce their negative consequences,it is crucial to quickly detect these abnormalities and incentivize them.In this paper,we propose a Federated Learning framework for Detecting and Incentivizing Abnormal Clients(FL-DIAC)to accomplish efficient and security federated learning.We build a detector that introduces an auto-encoder for anomaly detection and use it to perform anomaly identification and prevent the involvement of abnormal clients,in particular for the anomaly client detection problem.Among them,before the model parameters are input to the detector,we propose a Fourier transform-based anomaly data detectionmethod for dimensionality reduction in order to reduce the computational complexity.Additionally,we create a credit scorebased incentive structure to encourage clients to participate in training in order tomake clients actively participate.Three training models(CNN,MLP,and ResNet-18)and three datasets(MNIST,Fashion MNIST,and CIFAR-10)have been used in experiments.According to theoretical analysis and experimental findings,the FL-DIAC is superior to other federated learning schemes of the same type in terms of effectiveness.
基金supported in part by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant J2022011.
文摘Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs.
基金supported by National Natural Science Foundation of China(U2066211,52177124,52107134)the Institute of Electrical Engineering,CAS(E155610101)+1 种基金the DNL Cooperation Fund,CAS(DNL202023)the Youth Innovation Promotion Association of CAS(2019143).
文摘Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is designing a safe,efficient,and transparent trading model and operating mechanism.In this study,we consider a P2P trading environment based on blockchain technology,where prosumers can submit bids or offers without knowing the reports of others.We propose an Arrow-d’Aspremont-Gerard-Varet(AGV)-based mechanism to encourage prosumers to submit their real reserve price and determine the P2P transaction price.We demonstrate that the AGV mechanism can achieve Bayesian incentive compatibility and budget balance.Kernel density estimation(KDE)is used to derive the prior distribution from the historical bid/offer information of the agents.Case studies are carried out to analyze and evaluate the proposed mechanism.Simulation results verify the effectiveness of the proposed mechanism in guiding agents to report the true reserve price while maximizing social welfare.Moreover,we discuss the advantages of budget balance for decentralized trading by comparing the Vickrey-Clarke-Groves(VCG)and AGV mechanisms.
基金the National Natural Science Foundation of China under Grant No.60503045and No.60303040
文摘BitTorrent is a very popular Peer-to-Peer file sharing system, which adopts a set of incentive mechanisms to encourage contribution and prevent free-riding. However, we find that BitTorrent’s incentive mechanism can prevent free-riding effectively in a system with a relatively low number of seeds, but may fail in producing a disincentive for free-riding in a system with a high number of seeds. The reason is that BitTorrent does not provide effective mechanisms for seeds to guard against free-riding. Therefore, we propose a seed bandwidth allocation strategy for the BitTorrent system to reduce the effect of seeds on free-riding. Our target is that a downloader which provides more service to the system will be granted a higher benefit than downloaders which provide lower service when some downloaders ask for downloading file from a seed. Finally, simulation results are given, which validate the effectiveness of the proposed strategy.
文摘Alternative Land Use Services (ALUS) is an incentive-based program established in Canada to pay farmers for their voluntary delivery of ecosystem services (ES). All seven ALUS programs across the country were examined using a standardized case-study approach based on site visits, reading internal documents, attending program meetings, and engaging in semi-structured interviews with program administrators, participating farmers, and advisory board members. Direct content analysis was used to highlight recurrent themes and emerging lessons in relation to the salient particulars of program physical location, administration framework, delivery of ES, and development and receipt by communities. Our three major findings are: 1) Overall, ALUS has been judged by participants to be a very successful program, whose strength is that it is completely voluntary, non-permanent, and readily adaptable to each location’s environmental conditions, economic funding base, and cultural milieu. 2) One serious shortcoming of all ALUS programs is a general lack of quantifiable data on their ability to increase ES. Instead, environmental benefits are either assumed or based on the idea that the areal extent of enrolled land is the sole measure of its environmental worth. 3) It may be that the social impact of ALUS is its greatest success. In this regard, for farmers, it is the process of engaging in land-use decision making and the recognition of their role as environmental stewards that is a bigger motivation for participating in an ALUS program than the modest financial incentives which they receive.
文摘The role played by Payments for ecosystem services (PES) in promoting land use interventions is increasingly being recognized as an important instrument for changing land use management worldwide. Despite the increase, adoption of land use interventions promoted by PES and factors influencing it are not well understood. This study was carried out to assess the adoption of land use interventions promoted by PES scheme four years after its implementation in the Uluguru Mountains, Tanzania. The specific objectives of this study were to assess the adoption and factors that influenced it. The study employed questionnaire survey method to collect data from 219 households selected randomly. Focus group discussions and key informant interviews were also conducted to complement information obtained through questionnaire surveys. Descriptive and inferential statistical analyses were employed. Binary logistic regression was used to analyse quantitative data obtained, while content analysis was applied to qualitative data. Results revealed that during the project implementation, 40% of the households did not adopt any of the promoted interventions. Unexpectedly, four years after the project ended, every household sampled had adopted the interventions. Households headed by younger heads and those with land ownership, households which received PES incentives and lived for a long time in the same area and those with more labour force and access to extension services were found to have adopted more interventions (p ≤ 0.05). Thus, the study concludes that socioeconomic characteristics, agricultural extension services and incentives initially provided to farmers are key factors influencing the adoption of land use interventions. Therefore, it is recommended to the government that it should support farmers to get land tenure and to provide them with more incentives to improve their farms through adopting technologies.
文摘As 5G becomes commercial,researchers have turned attention toward the Sixth-Generation(6G)network with the vision of connecting intelligence in a green energy-efficient manner.Federated learning triggers an upsurge of green intelligent services such as resources orchestration of communication infrastructures while preserving privacy and increasing communication efficiency.However,designing effective incentives in federated learning is challenging due to the dynamic available clients and the correlation between clients'contributions during the learning process.In this paper,we propose a dynamic incentive and reputation mechanism to improve energy efficiency and training performance of federated learning.The proposed incentive based on the Stackelberg game can timely adjust optimal energy consumption with changes in available clients during federated learning.Meanwhile,clients’contributions in reputation management are formulated based on the cooperative game to capture the correlation between tasks,which satisfies availability,fairness,and additivity.The simulation results show that the proposed scheme can significantly motivate high-performance clients to participate in federated learning and improve the accuracy and energy efficiency of the federated learning model.
基金supported by National Key R&D Program of China(2020YFB1807800).
文摘Crowdsensing,as a data collection method that uses the mobile sensing ability of many users to help the public collect and extract useful information,has received extensive attention in data collection.Since crowdsensing relies on user equipment to consume resources to obtain information,and the quality and distribution of user equipment are uneven,crowdsensing has problems such as low participation enthusiasm of participants and low quality of collected data,which affects the widespread use of crowdsensing.This paper proposes to apply the blockchain to crowdsensing and solve the above challenges by utilizing the characteristics of the blockchain,such as immutability and openness.An architecture for constructing a crowdsensing incentive mechanism under distributed incentives is proposed.A multi-attribute auction algorithm and a k-nearest neighbor-based sensing data quality determination algorithm are proposed to support the architecture.Participating users upload data,determine data quality according to the algorithm,update user reputation,and realize the selection of perceived data.The process of screening data and updating reputation value is realized by smart contracts,which ensures that the information cannot be tampered with,thereby encouraging more users to participate.Results of the simulation show that using two algorithms can well reflect data quality and screen out malicious data.With the help of blockchain performance,the architecture and algorithm can achieve decentralized storage and tamper-proof information,which helps to motivate more users to participate in perception tasks and improve data quality.
文摘Background:Researchers have a higher risk of anxiety and depression than the general population,so it is important to promote researchers’mental health.Method:Based on the data from 3210 global researchers surveyed by the journal Nature in 2021,confirmatory factor analysis,OLS regression and other regressions were used to explore the research incentive dimensions and their effects on researchers’mental health.Results:(1)Material incentive factors,work-family life balance factors,good organizational environment and spiritual motivation had significant positive effects on researchers’mental health.(2)The spiritual motivation could better promote researchers’mental health than the other factors.(3)Heterogeneity analysis showed that material incentive factors and spiritual motivation created more significant stimulating effects on the mental health of humanities and social sciences researchers.Work-family life balance factors were more effective in promoting the mental health of the mid-career group and the overtime group.Conclusion:Application of the four research incentives resulted in lower likelihood of anxiety or depression among researchers,and special attention should be paid to the role of the spiritual motivation.In order to promote researchers’mental health,different incentives should be applied to different researcher groups to better improve researchers’mental health.
文摘Various Cardiovascular Diseases (CVDs) can be catastrophic and can lead to irreversible outcomes. Despite improved interventions for CVD prevention awareness, there continues to be discussion and research on diet-related CVD and mortality without addressing the problem. Instead of prioritizing public guidelines and policies, policymakers should understand CVD and address population barriers to adhering to a healthy diet that decreases CVD risk. Therefore, this project aims to analyze federal healthy food incentive policies to promote healthy diet behaviors that reduce CVD risk. The method used was existing data for a comparative policy analysis that included a policy proposal process: phases of progression, measures, and a policy model with data collection and requirements. This analysis compared a current federal food incentive program versus the proposed program. Results of the final analysis derived from the literature review and collected data stated consuming foods from the Mediterranean and other low-fat and low-salt diets reduced CVD risks that also reduced other risks secondary to CVD, such as obesity, diabetes, and Cerebrovascular Accident (CVA). Comparatively, combined healthy food incentives and disincentives were more effective for improving healthy behaviors than, in some cases, even after incentives were removed. Therefore, this policy analysis supports the indication for incentive policy change. However, the lack of federal stakeholders’ response to key policy changes upon proposal submission may require other methods of proposal dissemination. Nonetheless, focusing analysis on various Food Insecurity Nutrition Incentive (FINI) programs instead of one, multi-state program, which may have improved analysis outcomes, was the lesson learned.
基金Province Keys Research and Development Program of Shandong(Soft Science Projects)[No.2021RKY01007]Major Scientific and Technological Innovation Projects in Shandong Province[No.2018CXGC0703].
文摘To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-agent framework,examines the dynamic game situation before the contract being signed,and develops four information models.The analysis reveals a Pareto improvement in the game’s Nash equilibrium when comparing the four models from the standpoint of the supply chain.In the complete information scenario,the service level of the service provider,the customer company’s incentive effectiveness,and the supply chain system’s ultimate profit are all maximized.Furthermore,a coordinating mechanism for disposable profit is built in this study.The paper then suggests a blockchain-based architecture for the service outsourcing process supervision and a distributed incentive mechanism under the coordination mechanism in response to the inadequacy of the principal-agent theory to address the information asymmetry problem and the moral hazard problem.The experiment’s end findings demonstrate that both parties can benefit from the coordination mechanism,and the application of blockchain technology can resolve these issues and effectively encourage service providers.
文摘Objective To provide reference for improving Chinese innovative drug research and development incentive policies.Methods Based on investigating the incentive policies for innovative drug research and development in clinical research,evaluation and approval in China,anti-tumor drugs were taken as the research object to discuss relevant policies from the perspective of clinical trials and registration approval based on data statistics and current situation analysis.Results and Conclusion Driven by a series of incentive policies for innovative drug R&D,great achievements have been made on anti-tumor drugs.However,there are problems such as concentration of drug targets,homogenization of clinical trials,and gaps in some drugs with large clinical needs.To improve incentive policies for innovative drug R&D,China should adhere to the orientation of clinical value,focusing on basic research and translational research,improving evaluation and approval capabilities,and establishing a sound ecosystem for innovative drugs.
基金supported in part by the Natural Science Foundation of Shandong Province of China(ZR202103040180)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-004the Fundamental Research Funds for the Central Universities under Grant 20CX05019A.
文摘The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.
基金supported by the National Natural Science Foundation of China(71671035)。
文摘Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satisfaction,and ultimately promote sales and maximize profit for the manufacturer.By considering the combinations of corrective maintenance and preventive maintenance,totally three types of maintenance service contracts are designed.Moreover,attractive incentive and penalty mechanisms are adopted in the contracts.On this basis,Nash non-cooperative game is applied to analyze the revenue for both the manufacturer and customers,and so as to optimize the pricing mechanism of maintenance service contract and achieve a win-win situation.Numerical experiments are conducted.The results show that by taking into account the incentive and penalty mechanisms,the revenue can be improved for both the customers and manufacturer.Moreover,with the increase of repair rate and improvement factor in the preventive maintenance,the revenue will increase gradually for both the parties.
基金The National Natural Science Foundation of China(No.71071033)the Youth Foundation of Humanity and Social Scienceof Ministry of Education of China(No.11YJC630234)
文摘In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote client enterprises to complete outsourcing service actively. The incentive mechanism model of information security outsourcing is designed based on the principal-agent theory. Through analyzing the factors such as enterprise information assets value, invasion probability, information security environment, the agent cost coefficient and agency risk preference degree how to impact on the incentive mechanism, conclusions show that an enterprise information assets value and invasion probability have a positive influence on the fixed fee and the compensation coefficient; while information security environment, the agent cost coefficient and agency risk preference degree have a negative influence on the compensation coefficient. Therefore, the principal enterprises should reasonably design the fixed fee and the compensation coefficient to encourage information security outsourcing agency enterprises to the full extent.
文摘This study conducted an in-depth analysis of the current tax preferential policies for small-scale individual businesses and compared them with similar policies both domestically and internationally,aiming to reveal the advantages and disadvantages of the current system.After examining the impact of these tax preferential policies on the economic status of individual business owners and the broader social economy,this article proposes a set of innovative tax preferential strategies based on theoretical foundations.By developing these innovative strategies and clarifying their implementation paths,the aim is to promote the sustainable and healthy development of small-scale individual businesses,thereby fostering comprehensive socio-economic progress.The conclusion of this study not only summarizes policy recommendations with practical significance but also provides theoretical support for the optimization and innovation of future related systems.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61672408, U1405255, 61502368, 61602537, 61602357, 61672413, U1509214, U1135002)National High Technology Research and Development Program (863 Program) (Grant Nos. 2015AA016007, 2015AA017203)+5 种基金China Postdoctoral Science Foundation Funded Project (Grant No.2016M592762)Shaanxi Science & Technology Coordination & Innovation Project (Grant No.2016TZC-G-6-3)Shaanxi Provincial Natural Science Foundation (Grant Nos. 2015JQ6227, 2016JM6005)China 111 Project (Grant No. B16037)Beijing Municipal Social Science Foundation(Grant No. 16XCC023)Fundamental Research Funds for the Central Universities (Grant Nos. JB150308, JB150309, JB161501, JBG161511)
文摘The ubiquity of mobile devices have promoted the prosperity of mobile crowd systems, which recruit crowds to contribute their resources for performing tasks. Yet, due to the various resource consumption, the crowds may be reluctant to join and contribute information. Thus, the low participation level of crowds will be a hurdle that prevents the adoption of crowdsourcing. A critical challenge for these systems is how to design a proper mechanism such that the crowds spontaneously act as suppliers to contribute accurate information. Most of existing mechanisms ignore either the honesty of crowds or requesters respectively. In this paper, considering the honesty of both, we propose a game-based incentive mechanism, namely RTRC, to stimulate the crowds to contribute accurate information and to motivate the requesters to return accurate feedbacks. In addition, an evolutionary game is designed to model the dynamic of user-strategy selection. Specially, the replicator dynamic is applied to model the adaptation of strategy interactions taking into account the dynamic nature in time dependence and we also derive the evolutionarily stable strategies(ESSs) for users. Finally, empirical results over the simulations show that all the requesters and suppliers will select honest strategy to maximize their profit.
文摘Both conflict and asymmetric information exist betweenthe telecom operators and the service provider,and result in illegal behaviors of the service provider.The relationship between the telecom operators andthe service provider is classical multi-task principalagentrelationship. The multi-task incentive for theservice provider is considered in the design of theprincipal-agent incentive contract, and it is necessaryto add the multi-task incentive to the serviceproviders through the analysis of the risk costs andthe agency costs of this problem.