期刊文献+
共找到49,127篇文章
< 1 2 250 >
每页显示 20 50 100
An Incentive Mechanism for Federated Learning:A Continuous Zero-Determinant Strategy Approach
1
作者 Changbing Tang Baosen Yang +3 位作者 Xiaodong Xie Guanrong Chen Mohammed A.A.Al-qaness Yang Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期88-102,共15页
As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems rema... As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems remain, including privacy breaches, imbalances in payment, and inequitable distribution.These shortcomings let devices reluctantly contribute relevant data to, or even refuse to participate in FL. Therefore, in the application of FL, an important but also challenging issue is to motivate as many participants as possible to provide high-quality data to FL. In this paper, we propose an incentive mechanism for FL based on the continuous zero-determinant(CZD) strategies from the perspective of game theory. We first model the interaction between the server and the devices during the FL process as a continuous iterative game. We then apply the CZD strategies for two players and then multiple players to optimize the social welfare of FL, for which we prove that the server can keep social welfare at a high and stable level. Subsequently, we design an incentive mechanism based on the CZD strategies to attract devices to contribute all of their high-accuracy data to FL.Finally, we perform simulations to demonstrate that our proposed CZD-based incentive mechanism can indeed generate high and stable social welfare in FL. 展开更多
关键词 Federated learning(FL) game theory incentive mechanism machine learning zero-determinant strategy
下载PDF
Improving Federated Learning through Abnormal Client Detection and Incentive
2
作者 Hongle Guo Yingchi Mao +3 位作者 Xiaoming He Benteng Zhang Tianfu Pang Ping Ping 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期383-403,共21页
Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients m... Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate,but because the clients are independent,the central server cannot fully control their behavior.The central server has no way of knowing the correctness of the model parameters provided by each client in this round,so clients may purposefully or unwittingly submit anomalous data,leading to abnormal behavior,such as becoming malicious attackers or defective clients.To reduce their negative consequences,it is crucial to quickly detect these abnormalities and incentivize them.In this paper,we propose a Federated Learning framework for Detecting and Incentivizing Abnormal Clients(FL-DIAC)to accomplish efficient and security federated learning.We build a detector that introduces an auto-encoder for anomaly detection and use it to perform anomaly identification and prevent the involvement of abnormal clients,in particular for the anomaly client detection problem.Among them,before the model parameters are input to the detector,we propose a Fourier transform-based anomaly data detectionmethod for dimensionality reduction in order to reduce the computational complexity.Additionally,we create a credit scorebased incentive structure to encourage clients to participate in training in order tomake clients actively participate.Three training models(CNN,MLP,and ResNet-18)and three datasets(MNIST,Fashion MNIST,and CIFAR-10)have been used in experiments.According to theoretical analysis and experimental findings,the FL-DIAC is superior to other federated learning schemes of the same type in terms of effectiveness. 展开更多
关键词 Federated learning abnormal clients incentive credit score abnormal score DETECTION
下载PDF
Flexible Load Participation in Peaking Shaving and Valley Filling Based on Dynamic Price Incentives
3
作者 Lifeng Wang Jing Yu Wenlu Ji 《Energy Engineering》 EI 2024年第2期523-540,共18页
Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various ... Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs. 展开更多
关键词 Demand response fixed time-of-use electricity price mechanism dynamic price incentives mechanism bi-level model flexible load
下载PDF
Incentive-compatible and budget balanced AGV mechanism for peer-to-peer energy trading in smart grids 被引量:1
4
作者 Yujia Chen Wei Pei +1 位作者 Hao Xiao Tengfei Ma 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期26-35,共10页
Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is desig... Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is designing a safe,efficient,and transparent trading model and operating mechanism.In this study,we consider a P2P trading environment based on blockchain technology,where prosumers can submit bids or offers without knowing the reports of others.We propose an Arrow-d’Aspremont-Gerard-Varet(AGV)-based mechanism to encourage prosumers to submit their real reserve price and determine the P2P transaction price.We demonstrate that the AGV mechanism can achieve Bayesian incentive compatibility and budget balance.Kernel density estimation(KDE)is used to derive the prior distribution from the historical bid/offer information of the agents.Case studies are carried out to analyze and evaluate the proposed mechanism.Simulation results verify the effectiveness of the proposed mechanism in guiding agents to report the true reserve price while maximizing social welfare.Moreover,we discuss the advantages of budget balance for decentralized trading by comparing the Vickrey-Clarke-Groves(VCG)and AGV mechanisms. 展开更多
关键词 P2P energy trading AGV mechanism Budget balance incentive compatibility
下载PDF
An Incentive Mechanism Model for Crowdsensing with Distributed Storage in Smart Cities
5
作者 Jiaxing Wang Lanlan Rui +2 位作者 Yang Yang Zhipeng Gao Xuesong Qiu 《Computers, Materials & Continua》 SCIE EI 2023年第8期2355-2384,共30页
Crowdsensing,as a data collection method that uses the mobile sensing ability of many users to help the public collect and extract useful information,has received extensive attention in data collection.Since crowdsens... Crowdsensing,as a data collection method that uses the mobile sensing ability of many users to help the public collect and extract useful information,has received extensive attention in data collection.Since crowdsensing relies on user equipment to consume resources to obtain information,and the quality and distribution of user equipment are uneven,crowdsensing has problems such as low participation enthusiasm of participants and low quality of collected data,which affects the widespread use of crowdsensing.This paper proposes to apply the blockchain to crowdsensing and solve the above challenges by utilizing the characteristics of the blockchain,such as immutability and openness.An architecture for constructing a crowdsensing incentive mechanism under distributed incentives is proposed.A multi-attribute auction algorithm and a k-nearest neighbor-based sensing data quality determination algorithm are proposed to support the architecture.Participating users upload data,determine data quality according to the algorithm,update user reputation,and realize the selection of perceived data.The process of screening data and updating reputation value is realized by smart contracts,which ensures that the information cannot be tampered with,thereby encouraging more users to participate.Results of the simulation show that using two algorithms can well reflect data quality and screen out malicious data.With the help of blockchain performance,the architecture and algorithm can achieve decentralized storage and tamper-proof information,which helps to motivate more users to participate in perception tasks and improve data quality. 展开更多
关键词 Crowdsensing incentive mechanism blockchain smart contract
下载PDF
Do Research Incentives Promote Researchers’Mental Health?
6
作者 Liujian Gu Tao Wang +2 位作者 Chuanyi Wang M.James CCrabbe Xiao-Guang Yue 《International Journal of Mental Health Promotion》 2023年第8期903-914,共12页
Background:Researchers have a higher risk of anxiety and depression than the general population,so it is important to promote researchers’mental health.Method:Based on the data from 3210 global researchers surveyed b... Background:Researchers have a higher risk of anxiety and depression than the general population,so it is important to promote researchers’mental health.Method:Based on the data from 3210 global researchers surveyed by the journal Nature in 2021,confirmatory factor analysis,OLS regression and other regressions were used to explore the research incentive dimensions and their effects on researchers’mental health.Results:(1)Material incentive factors,work-family life balance factors,good organizational environment and spiritual motivation had significant positive effects on researchers’mental health.(2)The spiritual motivation could better promote researchers’mental health than the other factors.(3)Heterogeneity analysis showed that material incentive factors and spiritual motivation created more significant stimulating effects on the mental health of humanities and social sciences researchers.Work-family life balance factors were more effective in promoting the mental health of the mid-career group and the overtime group.Conclusion:Application of the four research incentives resulted in lower likelihood of anxiety or depression among researchers,and special attention should be paid to the role of the spiritual motivation.In order to promote researchers’mental health,different incentives should be applied to different researcher groups to better improve researchers’mental health. 展开更多
关键词 Researchers mental health research incentive
下载PDF
Prescribed Performance Tracking Control of Time-Delay Nonlinear Systems With Output Constraints 被引量:1
7
作者 Jin-Xi Zhang Kai-Di Xu Qing-Guo Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1557-1565,共9页
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ... The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings. 展开更多
关键词 Nonlinear systems output constraints prescribed performance reference tracking time delays
下载PDF
A dynamic incentive and reputation mechanism for energy-efficient federated learning in 6G
8
作者 Ye Zhu Zhiqiang Liu +1 位作者 Peng Wang Chenglie Du 《Digital Communications and Networks》 SCIE CSCD 2023年第4期817-826,共10页
As 5G becomes commercial,researchers have turned attention toward the Sixth-Generation(6G)network with the vision of connecting intelligence in a green energy-efficient manner.Federated learning triggers an upsurge of... As 5G becomes commercial,researchers have turned attention toward the Sixth-Generation(6G)network with the vision of connecting intelligence in a green energy-efficient manner.Federated learning triggers an upsurge of green intelligent services such as resources orchestration of communication infrastructures while preserving privacy and increasing communication efficiency.However,designing effective incentives in federated learning is challenging due to the dynamic available clients and the correlation between clients'contributions during the learning process.In this paper,we propose a dynamic incentive and reputation mechanism to improve energy efficiency and training performance of federated learning.The proposed incentive based on the Stackelberg game can timely adjust optimal energy consumption with changes in available clients during federated learning.Meanwhile,clients’contributions in reputation management are formulated based on the cooperative game to capture the correlation between tasks,which satisfies availability,fairness,and additivity.The simulation results show that the proposed scheme can significantly motivate high-performance clients to participate in federated learning and improve the accuracy and energy efficiency of the federated learning model. 展开更多
关键词 Federated learning incentive mechanism Reputation management Cooperative game Stackelberg game Green communication
下载PDF
Improving Interventions on Cardiovascular Disease and Diet: A Policy Incentive Analysis
9
作者 Sandra Hurst 《Health》 2023年第6期569-621,共53页
Various Cardiovascular Diseases (CVDs) can be catastrophic and can lead to irreversible outcomes. Despite improved interventions for CVD prevention awareness, there continues to be discussion and research on diet-rela... Various Cardiovascular Diseases (CVDs) can be catastrophic and can lead to irreversible outcomes. Despite improved interventions for CVD prevention awareness, there continues to be discussion and research on diet-related CVD and mortality without addressing the problem. Instead of prioritizing public guidelines and policies, policymakers should understand CVD and address population barriers to adhering to a healthy diet that decreases CVD risk. Therefore, this project aims to analyze federal healthy food incentive policies to promote healthy diet behaviors that reduce CVD risk. The method used was existing data for a comparative policy analysis that included a policy proposal process: phases of progression, measures, and a policy model with data collection and requirements. This analysis compared a current federal food incentive program versus the proposed program. Results of the final analysis derived from the literature review and collected data stated consuming foods from the Mediterranean and other low-fat and low-salt diets reduced CVD risks that also reduced other risks secondary to CVD, such as obesity, diabetes, and Cerebrovascular Accident (CVA). Comparatively, combined healthy food incentives and disincentives were more effective for improving healthy behaviors than, in some cases, even after incentives were removed. Therefore, this policy analysis supports the indication for incentive policy change. However, the lack of federal stakeholders’ response to key policy changes upon proposal submission may require other methods of proposal dissemination. Nonetheless, focusing analysis on various Food Insecurity Nutrition Incentive (FINI) programs instead of one, multi-state program, which may have improved analysis outcomes, was the lesson learned. 展开更多
关键词 CVD Risk Prevention Diets Dietary Guidelines American Stroke/Heart Association (ASA/AHA) CVA Federal Healthy Food incentives
下载PDF
On Incentive and Coordination Mechanism of Service Outsourcing Based on Principal-Agent Theory and Blockchain Technology
10
作者 Chenglong Yan Xiao Wang +1 位作者 Xiaonan Zhang Ruzhi Xu 《Journal of Artificial Intelligence and Technology》 2023年第1期1-9,共9页
To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-... To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-agent framework,examines the dynamic game situation before the contract being signed,and develops four information models.The analysis reveals a Pareto improvement in the game’s Nash equilibrium when comparing the four models from the standpoint of the supply chain.In the complete information scenario,the service level of the service provider,the customer company’s incentive effectiveness,and the supply chain system’s ultimate profit are all maximized.Furthermore,a coordinating mechanism for disposable profit is built in this study.The paper then suggests a blockchain-based architecture for the service outsourcing process supervision and a distributed incentive mechanism under the coordination mechanism in response to the inadequacy of the principal-agent theory to address the information asymmetry problem and the moral hazard problem.The experiment’s end findings demonstrate that both parties can benefit from the coordination mechanism,and the application of blockchain technology can resolve these issues and effectively encourage service providers. 展开更多
关键词 service outsourcing coordination mechanism distributed incentive mechanism blockchain
下载PDF
Research on the Incentive System of Human Resource Management in Universities
11
作者 Dan Li 《Journal of Contemporary Educational Research》 2023年第4期61-66,共6页
Based on the actual situation of the establishment of the incentive system for human resource management in universities,the constituent elements and relevant principles of the incentive system for human resources in ... Based on the actual situation of the establishment of the incentive system for human resource management in universities,the constituent elements and relevant principles of the incentive system for human resources in universities are expounded on,the current situation of the actual needs of the faculty and staff in universities is studied and analyzed,and practical plans for establishing the concept and implementing the incentive system in universities are proposed,with relevant incentive mechanisms for human resource management focusing on differentiated needs developed for reference. 展开更多
关键词 Human resources incentive system Problem solving University manpower
下载PDF
Research on Incentive Policies for Chinese Innovative Drug R&D - Taking Innovative Anti-tumor Drugs as an Example
12
作者 Wang Yuejun Yang Yue Huang Zhe 《Asian Journal of Social Pharmacy》 2023年第4期303-314,共12页
Objective To provide reference for improving Chinese innovative drug research and development incentive policies.Methods Based on investigating the incentive policies for innovative drug research and development in cl... Objective To provide reference for improving Chinese innovative drug research and development incentive policies.Methods Based on investigating the incentive policies for innovative drug research and development in clinical research,evaluation and approval in China,anti-tumor drugs were taken as the research object to discuss relevant policies from the perspective of clinical trials and registration approval based on data statistics and current situation analysis.Results and Conclusion Driven by a series of incentive policies for innovative drug R&D,great achievements have been made on anti-tumor drugs.However,there are problems such as concentration of drug targets,homogenization of clinical trials,and gaps in some drugs with large clinical needs.To improve incentive policies for innovative drug R&D,China should adhere to the orientation of clinical value,focusing on basic research and translational research,improving evaluation and approval capabilities,and establishing a sound ecosystem for innovative drugs. 展开更多
关键词 innovative drug innovative anti-tumor drug incentive policy policy analysis
下载PDF
Characterization and quantification of multi-field coupling in lithium-ion batteries under mechanical constraints
13
作者 Xue Cai Caiping Zhang +3 位作者 Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期364-379,I0009,共17页
The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coup... The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management. 展开更多
关键词 Lithium-ion battery Muti-field coupling Mechanical constraints Interaction mechanisms Quantitative analysis
下载PDF
A fast forward computational method for nuclear measurement using volumetric detection constraints
14
作者 Qiong Zhang Lin-Lv Lin 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期47-63,共17页
Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sour... Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method. 展开更多
关键词 Nuclear measurement Fast forward computation Volumetric constraints
下载PDF
Nonlinear Registration of Brain Magnetic Resonance Images with Cross Constraints of Intensity and Structure
15
作者 Han Zhou HongtaoXu +2 位作者 Xinyue Chang Wei Zhang Heng Dong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2295-2313,共19页
Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook se... Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively. 展开更多
关键词 Medical image registration cross constraint semantic consistency directional consistency DUAL-CHANNEL
下载PDF
Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint
16
作者 Zibin Mao Qinghai Zhao Liang Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期757-792,共36页
This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of m... This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design.The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads.The topology optimization formula is combined with the ordered solid isotropic material with penalization(ordered-SIMP)multi-material interpolation model.The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function.Furthermore,the sequential optimization and reliability assessment(SORA)is applied to transform the original uncertainty optimization problem into an equivalent deterministic topology optimization(DTO)problem.Stochastic response surface and sparse grid technique are combined with SORA to get accurate information on the most probable failure point(MPP).In each cycle,the equivalent topology optimization formula is updated according to the MPP information obtained in the previous cycle.The adjoint variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method(MMA)is used to update design variables.Finally,the validity and feasibility of the method are verified by the numerical example of L-shape beam design,T-shape structure design,steering knuckle,and 3D T-shaped beam. 展开更多
关键词 Stress constraint probabilistic-ellipsoid hybrid topology optimization reliability analysis multi-material design
下载PDF
Power Allocation for SE Maximization in Uplink Massive MIMO System Under Minimum Rate Constraint
17
作者 Wang Hui Yu Xiangbin +1 位作者 Liu Fuyuan Bai Jiawei 《China Communications》 SCIE CSCD 2024年第3期104-117,共14页
In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i... In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved. 展开更多
关键词 imperfect CSI massive MIMO minimum rate constraint power allocation spectral efficiency
下载PDF
Adaptive H_(∞)Filtering Algorithm for Train Positioning Based on Prior Combination Constraints
18
作者 Xiuhui Diao Pengfei Wang +2 位作者 Weidong Li Xianwu Chu Yunming Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1795-1812,共18页
To solve the problem of data fusion for prior information such as track information and train status in train positioning,an adaptive H∞filtering algorithm with combination constraint is proposed,which fuses prior in... To solve the problem of data fusion for prior information such as track information and train status in train positioning,an adaptive H∞filtering algorithm with combination constraint is proposed,which fuses prior information with other sensor information in the form of constraints.Firstly,the train precise track constraint method of the train is proposed,and the plane position constraint and train motion state constraints are analysed.A model for combining prior information with constraints is established.Then an adaptive H∞filter with combination constraints is derived based on the adaptive adjustment method of the robustness factor.Finally,the positioning effect of the proposed algorithm is simulated and analysed under the conditions of a straight track and a curved track.The results show that the positioning accuracy of the algorithm with constrained filtering is significantly better than that of the algorithm without constrained filtering and that the algorithm with constrained filtering can achieve better performance when combined with track and condition information,which can significantly reduce the train positioning error.The effectiveness of the proposed algorithm is verified. 展开更多
关键词 Train positioning combination constraint adaptive H_(∞)filter
下载PDF
Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force
19
作者 Xiaodong GUO Zhu SU Lifeng WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期295-310,共16页
A theoretical model for the multi-span spinning beams with elastic constraints under an axial compressive force is proposed.The displacement and bending angle functions are represented through an improved Fourier seri... A theoretical model for the multi-span spinning beams with elastic constraints under an axial compressive force is proposed.The displacement and bending angle functions are represented through an improved Fourier series,which ensures the continuity of the derivative at the boundary and enhances the convergence.The exact characteristic equations of the multi-span spinning beams with elastic constraints under an axial compressive force are derived by the Lagrange equation.The efficiency and accuracy of the present method are validated in comparison with the finite element method(FEM)and other methods.The effects of the boundary spring stiffness,the number of spans,the spinning velocity,and the axial compressive force on the dynamic characteristics of the multi-span spinning beams are studied.The results show that the present method can freely simulate any boundary constraints without modifying the solution process.The elastic range of linear springs is larger than that of torsion springs,and it is not affected by the number of spans.With an increase in the axial compressive force,the attenuation rate of the natural frequency of a spinning beam with a large number of spans becomes larger,while the attenuation rate with an elastic boundary is lower than that under a classic simply supported boundary. 展开更多
关键词 multi-span spinning beam elastic constraint improved Fourier series free vibration semi-analytical solution
下载PDF
Dynamic Constraint-Driven Event-Triggered Control of Strict-Feedback Systems Without Max/Min Values on Irregular Constraints
20
作者 Zhuwu Shao Yujuan Wang +1 位作者 Zeqiang Li Yongduan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期569-580,共12页
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu... This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method. 展开更多
关键词 Adaptive control dynamic constraint-driven event-triggered control irregular output constraints nonlinear strict-feed-back systems
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部