Violence recognition is crucial because of its applications in activities related to security and law enforcement.Existing semi-automated systems have issues such as tedious manual surveillances,which causes human err...Violence recognition is crucial because of its applications in activities related to security and law enforcement.Existing semi-automated systems have issues such as tedious manual surveillances,which causes human errors and makes these systems less effective.Several approaches have been proposed using trajectory-based,non-object-centric,and deep-learning-based methods.Previous studies have shown that deep learning techniques attain higher accuracy and lower error rates than those of other methods.However,the their performance must be improved.This study explores the state-of-the-art deep learning architecture of convolutional neural networks(CNNs)and inception V4 to detect and recognize violence using video data.In the proposed framework,the keyframe extraction technique eliminates duplicate consecutive frames.This keyframing phase reduces the training data size and hence decreases the computational cost by avoiding duplicate frames.For feature selection and classification tasks,the applied sequential CNN uses one kernel size,whereas the inception v4 CNN uses multiple kernels for different layers of the architecture.For empirical analysis,four widely used standard datasets are used with diverse activities.The results confirm that the proposed approach attains 98%accuracy,reduces the computational cost,and outperforms the existing techniques of violence detection and recognition.展开更多
基金This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07042967)the Soonchunhyang University Research Fund.
文摘Violence recognition is crucial because of its applications in activities related to security and law enforcement.Existing semi-automated systems have issues such as tedious manual surveillances,which causes human errors and makes these systems less effective.Several approaches have been proposed using trajectory-based,non-object-centric,and deep-learning-based methods.Previous studies have shown that deep learning techniques attain higher accuracy and lower error rates than those of other methods.However,the their performance must be improved.This study explores the state-of-the-art deep learning architecture of convolutional neural networks(CNNs)and inception V4 to detect and recognize violence using video data.In the proposed framework,the keyframe extraction technique eliminates duplicate consecutive frames.This keyframing phase reduces the training data size and hence decreases the computational cost by avoiding duplicate frames.For feature selection and classification tasks,the applied sequential CNN uses one kernel size,whereas the inception v4 CNN uses multiple kernels for different layers of the architecture.For empirical analysis,four widely used standard datasets are used with diverse activities.The results confirm that the proposed approach attains 98%accuracy,reduces the computational cost,and outperforms the existing techniques of violence detection and recognition.