Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints....Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained.展开更多
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges i...Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.展开更多
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoi...Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.展开更多
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i...Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed.展开更多
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte...Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.展开更多
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b...Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper.展开更多
A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any...A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs Pn VPn, Cn VCn and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs Pn V Pn and Cn ∨ Cn.展开更多
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw...Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△.展开更多
Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E...Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)...展开更多
In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number...In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number of some graphs such as cycle, complete graph, complete bipartite graph, fan, wheel and tree.展开更多
A new concept of the D(β)-vertex-distinguishing total coloring of graphs, i.e., the proper total coloring such that any two vertices whose distance is not larger than β have different color sets, where the color set...A new concept of the D(β)-vertex-distinguishing total coloring of graphs, i.e., the proper total coloring such that any two vertices whose distance is not larger than β have different color sets, where the color set of a vertex is the set composed of all colors of the vertex and the edges incident to it, is proposed in this paper. The D(2)-vertex-distinguishing total colorings of some special graphs are discussed, meanwhile, a conjecture and an open problem are presented.展开更多
Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-colorin...Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If C(u) ≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total-coloring of G, or a VDET coloring of G for short. The minimum number of colors required for a VDET colorings of G is denoted by X^evt(G), and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs mC3 and mC4.展开更多
文摘Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained.
基金The NSF(61163037,61163054) of Chinathe Scientific Research Project(nwnu-kjcxgc-03-61) of Northwest Normal University
文摘Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.
基金Supported by the NNSF of China(61163037,61163054)Supported by the Scientific Research Foundation of Ningxia University((E):ndzr09-15)
文摘Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.
基金Supported by the NNSF of China(10771091)Supported by the Qinglan Project of Lianyungang Teacher’s College(2009QLD3)
文摘Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed.
基金Supported by the National Natural Science Foundation of China(61163037, 61163054, 11261046, 61363060)
文摘Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.
基金Supported by the NNSF of China(Grant No.11761064,61163037)
文摘Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper.
基金the Xianyang Normal University Foundation for Basic Research(No.06XSYK266)Com~2 MaCKOSEP(R11-1999-054)
文摘A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs Pn VPn, Cn VCn and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs Pn V Pn and Cn ∨ Cn.
基金the Natural Science Foundation of Gansu Province (No. 3ZS051-A25-025) the Foundation of Gansu Provincial Department of Education (No. 0501-03).
文摘Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△.
基金the National Natural Science Foundation of China (No.10771091)the Science and Research Project of the Education Department of Gansu Province (No.0501-02)
文摘Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)...
文摘In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number of some graphs such as cycle, complete graph, complete bipartite graph, fan, wheel and tree.
文摘A new concept of the D(β)-vertex-distinguishing total coloring of graphs, i.e., the proper total coloring such that any two vertices whose distance is not larger than β have different color sets, where the color set of a vertex is the set composed of all colors of the vertex and the edges incident to it, is proposed in this paper. The D(2)-vertex-distinguishing total colorings of some special graphs are discussed, meanwhile, a conjecture and an open problem are presented.
基金Supported by the National Natural Science Foundation of China (Grant No.10771091)the Scientific Research Project of Northwest Normal University (Grant No.NWNU-KJCXGC-03-61)
文摘Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If C(u) ≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total-coloring of G, or a VDET coloring of G for short. The minimum number of colors required for a VDET colorings of G is denoted by X^evt(G), and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs mC3 and mC4.
基金Supported by Natural Science Poundation of China(60474029)Gansu Province Scientific Breakthroughs Project(2GS035-A052-011)Knowledge Innovation Project of Northwest Normal University(NWNU-KJCXGC-02-03)the Youth Teacher Foundation of Northwest Normal University(NWNU-QN-2003-22).