期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
Vertex-distinguishing E-total Coloring of Complete Bipartite Graph K 7,n when7≤n≤95 被引量:14
1
作者 chen xiang-en du xian-kun 《Communications in Mathematical Research》 CSCD 2016年第4期359-374,共16页
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints.... Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained. 展开更多
关键词 GRAPH complete bipartite graph E-total coloring vertex-distinguishingE-total coloring vertex-distinguishing E-total chromatic number
下载PDF
Vertex-distinguishing IE-total Colorings of Cycles and Wheels 被引量:4
2
作者 CHEN XIANG-EN HE WEN-YU +2 位作者 LI ZE-PENG YAO BING Du Xian-kun 《Communications in Mathematical Research》 CSCD 2014年第3期222-236,共15页
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges i... Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper. 展开更多
关键词 GRAPH IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Vertex-distinguishing VE-total Colorings of Cycles and Complete Graphs 被引量:5
3
作者 XIN Xiao-qing CHEN Xiang-en WANG Zhi-wen 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第1期92-97,共6页
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoi... Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture. 展开更多
关键词 GRAPHS VE-total coloring vertex-distinguishing VE-total coloring vertexdistinguishing VE-total chromatic number
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
4
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
Vertex-distinguishing IE-total Colorings of Complete Bipartite Graphs K8,n 被引量:3
5
作者 SHI Jin CHEN Xiang-en 《Chinese Quarterly Journal of Mathematics》 2016年第2期147-154,共8页
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte... Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained. 展开更多
关键词 complete bipartite graphs IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9
6
作者 HE Yu-ping CHEN Xiang'en 《Chinese Quarterly Journal of Mathematics》 2019年第3期242-258,共17页
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b... Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper. 展开更多
关键词 the UNION of GRAPHS PROPER total COLORING vertex-distinguishing total COLORING vertex-distinguishing total chromatic number
下载PDF
Vertex Distinguishing Equitable Total Chromatic Number of Join Graph 被引量:5
7
作者 Zhi-wen Wang Li-hong Yan Zhong-fuZhang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2007年第3期433-438,共6页
A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any... A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs Pn VPn, Cn VCn and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs Pn V Pn and Cn ∨ Cn. 展开更多
关键词 PATH CYCLE join graph vertex distinguishing equitable total chromatic number
原文传递
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
8
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for P_m × P_n,P_m × C_n and C_m × C_n 被引量:1
9
作者 陈祥恩 张忠辅 孙宜蓉 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期789-798,共10页
Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E... Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)... 展开更多
关键词 total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
一类仙人掌图的D(2)-点可区别全染色
10
作者 汪银芳 李沐春 王国兴 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期1-6,共6页
用数学归纳法和组合分析法给出最大度为3的仙人掌图G T的D(2)-点可区别全染色,进而得到χ_(2vt)(G T)≤6.结果表明,D(β)-VDTC猜想对最大度为3的仙人掌图成立.
关键词 仙人掌图 D(2)-点可区别全染色 D(2)-点可区别全色数
下载PDF
On adjacent-vertex-distinguishing total coloring of graphs 被引量:175
11
作者 ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China Department of Computer, Lanzhou Normal College, Lanzhou 730070, China +2 位作者 Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China 《Science China Mathematics》 SCIE 2005年第3期289-299,共11页
In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number... In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number of some graphs such as cycle, complete graph, complete bipartite graph, fan, wheel and tree. 展开更多
关键词 graph PROPER total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
原文传递
D(β)-vertex-distinguishing total coloring of graphs 被引量:56
12
作者 ZHANG Zhongfu,LI Jingwen,CHEN Xiang’en,YAO Bing, WANG Wenjie & QIU Pengxiang Institute of Applied Mathematic, Lanzhou Jiaotong University, Lanzhou 730070, China College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 《Science China Mathematics》 SCIE 2006年第10期1430-1440,共11页
A new concept of the D(β)-vertex-distinguishing total coloring of graphs, i.e., the proper total coloring such that any two vertices whose distance is not larger than β have different color sets, where the color set... A new concept of the D(β)-vertex-distinguishing total coloring of graphs, i.e., the proper total coloring such that any two vertices whose distance is not larger than β have different color sets, where the color set of a vertex is the set composed of all colors of the vertex and the edges incident to it, is proposed in this paper. The D(2)-vertex-distinguishing total colorings of some special graphs are discussed, meanwhile, a conjecture and an open problem are presented. 展开更多
关键词 graph total coloring D(β)-vertex-distinguishing total coloring D(β)-vertexdistinguishing total chromatic number.
原文传递
Vertex-Distinguishing E-Total Coloring of the Graphs mC_3 and mC_4 被引量:15
13
作者 Xiang En CHEN Yue ZU 《Journal of Mathematical Research and Exposition》 CSCD 2011年第1期45-58,共14页
Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-colorin... Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If C(u) ≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total-coloring of G, or a VDET coloring of G for short. The minimum number of colors required for a VDET colorings of G is denoted by X^evt(G), and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs mC3 and mC4. 展开更多
关键词 COLORING E-total coloring vertex-distinguishing E-total coloring vertex-distinguishing E-total chromatic number the vertex-disjoint union of m cycles with length n.
下载PDF
双圈图的邻点强可区别全染色
14
作者 周莉 文飞 李泽鹏 《数学杂志》 2023年第6期537-546,共10页
本文研究了双圈图的邻点强可区别全染色问题,并利用结构分析法给出了双圈图的邻点强可区别全色数的上界.即,当G是以∞-图为基图的双圈图时,则χ_(ast)(G)≤△(G)+2;其他χ_(ast)(G)≤△(G)+3.从而验证了张忠辅等提出的平面图的邻点强可... 本文研究了双圈图的邻点强可区别全染色问题,并利用结构分析法给出了双圈图的邻点强可区别全色数的上界.即,当G是以∞-图为基图的双圈图时,则χ_(ast)(G)≤△(G)+2;其他χ_(ast)(G)≤△(G)+3.从而验证了张忠辅等提出的平面图的邻点强可区别全染色猜想在双圈图上是成立的. 展开更多
关键词 双圈图 邻点强可区别全染色 邻点强可区别全色数
下载PDF
关于几类特殊图的Mycielski图的邻点可区别全色数(英文) 被引量:13
15
作者 陈祥恩 张忠辅 +1 位作者 晏静之 张贵仓 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期117-122,共6页
设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).... 设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设Xat(G)=min{k|G存在k-AVDTC},则称Xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数. 展开更多
关键词 全染色 邻点可区别全染色 邻点可区别全色数
下载PDF
点不交的m个C_3的并的点可区别全染色 被引量:11
16
作者 辛小青 王治文 +1 位作者 陈祥恩 姚兵 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第2期251-257,共7页
利用μ(G)的定义确定了点不交的m个C3(m≥2)的并的点可区别全色数的下界,并借助矩阵给出了点不交的m个C3(m≥2)的并的点可区别全染色方法,进而确定了它的点可区别全色数.
关键词 点可区别全染色 点可区别全色数 点不交的并
下载PDF
mK_4的点可区别全染色 被引量:12
17
作者 陈祥恩 王治文 +1 位作者 马彦荣 姚兵 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第4期686-692,共7页
利用色集事先分配法,借助于矩阵构造具体染色及递归法的方法,研究图的点可区别全染色问题,给出了m个K4的点不交的并mK4的点可区别全色数χvt(mK4)的确切值,即"如果(k-1)4<4m≤(k)4,m≥2,k≥6,则χvt(mK4)=k".验证了VDTC猜... 利用色集事先分配法,借助于矩阵构造具体染色及递归法的方法,研究图的点可区别全染色问题,给出了m个K4的点不交的并mK4的点可区别全色数χvt(mK4)的确切值,即"如果(k-1)4<4m≤(k)4,m≥2,k≥6,则χvt(mK4)=k".验证了VDTC猜想对mK4成立. 展开更多
关键词 点可区别全染色 点可区别全色数
下载PDF
若干联图的邻点可区别I-全染色 被引量:9
18
作者 张婷 朱恩强 +1 位作者 刘晓娜 赵双柱 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第2期267-272,共6页
利用函数构造法和数学归纳法,考虑图P_m∨S_n,F_m∨W_n和W_m∨W_n的邻点可区别I-全染色,给出了它们邻点可区别I-全色数.
关键词 联图 I-全染色 邻点可区别I-全染色 邻点可区别I-全色数
下载PDF
完全二部图K_(3,n)(3≤n≤17)的点可区别E-全染色 被引量:15
19
作者 李世玲 陈祥恩 王治文 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第6期1171-1176,共6页
设G是一个简单图,f为G的一个E-全染色.对任意点x∈V(G),用C(x)表示在f下点x的色以及与x关联边颜色所构成的集合.若u,v∈V(G),u≠v,有C(u)≠C(v),则f称为图G的点可区别E-全染色,简称VDET染色.图G的VDET染色所用颜色数目的最小值称为图... 设G是一个简单图,f为G的一个E-全染色.对任意点x∈V(G),用C(x)表示在f下点x的色以及与x关联边颜色所构成的集合.若u,v∈V(G),u≠v,有C(u)≠C(v),则f称为图G的点可区别E-全染色,简称VDET染色.图G的VDET染色所用颜色数目的最小值称为图G的点可区别E-全色数(简称为VDET色数),记为χevt(G).利用分析法和反证法,讨论并给出完全二部图K3,n(3≤n≤17)的点可区别E-全色数. 展开更多
关键词 完全二部图 E-全染色 点可区别E-全染色 点可区别E-全色数
下载PDF
若干路的冠图的邻点可区别V-全染色 被引量:9
20
作者 李沐春 王双莉 +1 位作者 张伟东 王立丽 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期97-99,共3页
根据路与完全图(星、扇、轮、路、圈)构造的冠图的结构性质,应用分析和构造函数法研究了邻点可区别V-全染色,得到了路与完全图(星、扇、轮、路、圈)构造的冠图的邻点可区别V-全色数.
关键词 冠图 邻点可区别V-全染色 邻点可区别V-全色数
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部