Grate fly ash and fluidized bed fly ash mixed with glass cullet additive respectively were melted in the electronic arc-furnace. The product, arc-melting slag, was further treated by crushing, pressing and heat treatm...Grate fly ash and fluidized bed fly ash mixed with glass cullet additive respectively were melted in the electronic arc-furnace. The product, arc-melting slag, was further treated by crushing, pressing and heat treatment in order to make the glass-ceramics. The crystallization behaviors of the produced glass-ceramics were examined by differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Results show that main crystalline phase of the glass-ceramics fi'om grate fly ash is wollastonite (CaSiO3) with small amount of diopside (Ca(Mg,Al)(Si,Al)206), and that from fluidized bed fly ash is diopside (Ca(Mg,Al)(Si,Al)206). It is found that the glass-ceramics sintered at 850 ℃and 1 000℃ from grate fly ash and fluidized bed fly ash respectively have the optimal physical, mechanical and chemical characteristics. Glass-ceramics samples, produced from incinerator fly ash with desirable properties and the low leaching concentration of heavy metals, can be the substitute of nature materials such as marble, granite and porcelain tiles.展开更多
The mechanism of removing phosphate by MSWI(municipal solid waste incineration)fly ash was investigated by SEM(scanning electron microscopy)with EDS(energy dispersion spectrum),XRD(X-ray diffraction),FT-IR(Fourier tra...The mechanism of removing phosphate by MSWI(municipal solid waste incineration)fly ash was investigated by SEM(scanning electron microscopy)with EDS(energy dispersion spectrum),XRD(X-ray diffraction),FT-IR(Fourier transform infrared spectroscopy),BET(specific surface area),and BJH(pore size distribution).The results indicate that the removal rate of phosphate(100 mg/L)in 50 mL phosphorus wastewater reaches at 99.9% as the dosage of MSWI fly ash being 0.9000 g under room temperature.The specific surface area of MSWI fly ash is less than 6.1 m2/g and the total pore volume is below 0.021 cm3/g,suggesting that the absorption capacity of calcite is too weak to play an important role in phosphate removal.SEM images show that drastic changes had taken place on its specific surface shape after reaction,and EDS tests indicate that some phosphate precipitates are formed and attached onto MSWI fly ash particles.Chemical precipitation is the main manner of phosphate removal and the main reaction is: 3Ca2++2 PO4 3-+xH2O→Ca3(PO4)2↓·xH2O.Besides,XRD tests show that the composition of MSWI fly ash is complex,but CaSO4 is likely to be the main source of Ca2+.The soluble heavy metals in MSWI fly ash are stabilized by phosphate.展开更多
Hydrochloric acid leaching, chloride evaporation, acetic acid leaching, and biological leaching were evaluated and compared as processes of heavy metal removal for municipal solid waste incineration fly ash(MSWFA). ...Hydrochloric acid leaching, chloride evaporation, acetic acid leaching, and biological leaching were evaluated and compared as processes of heavy metal removal for municipal solid waste incineration fly ash(MSWFA). Six factors, namely, energy consumption, process efficiency, process handling, process cost estimation, cost reduction potential, and study progress, were used in order to find out their advantages and disadvantages and to help develop a better recovery process of heavy metals from MSWFA in terms of treatment of the waste material. Hydrochloric acid leaching process was found to be most balanced among the evaluated processes. It showed superiority on energy consumption, process cost estimation, and study progress. On the other hand, despite of its excellency in process efficiency, chloride evaporation process was most unfavorable mainly due to heavy energy dependence. Biological process, with huge potential of cost reduction, was concluded to be the second best process.展开更多
At present,all kinds of municipal solid waste incineration (MSWI) fly ash stabilization technology has been reported and successfully applied in many countries.However,leaching procedures are very different that the t...At present,all kinds of municipal solid waste incineration (MSWI) fly ash stabilization technology has been reported and successfully applied in many countries.However,leaching procedures are very different that the technologies lack uniform standard,and it is even impossible to predict the long-term stabilization.Geochemical model can explain the environmental stabilization based on chemical phase and thermodynamic crystal structure,and it is also able to guide the development of environment-friendly stabi...展开更多
Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(P...Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.展开更多
Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure...Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure and properties of the glass-ceramics was examined. The results show that washing pretreatment of fly ash can decrease alkali metal chloride and increase network former in fly ash, which results in the increase of peak crystallization temperature of parent glass and strengthening of properties of bending strength and chemical stability of the glass-ceramics. The optimal heat treatment temperature for parent glass of washed fly ash is 1 173 K, at which the crystalline phase of glass-ceramics is composed of gelignite (Ca2A12SiO7) and akermanite (Ca2MgSi207). Glass-ceramics produced at optimal heat treatment temperature are excellent in term of the physical and chemical properties and leaching characteristics, indicating attractive potential as substitute of nature materials.展开更多
Glass-ceramics obtained from the electric arc furnace molten slag of incinerator fly ash was produced by applying nucleation and crystallization through heat treatment process. The effects of nucleating agent (TiO2 a...Glass-ceramics obtained from the electric arc furnace molten slag of incinerator fly ash was produced by applying nucleation and crystallization through heat treatment process. The effects of nucleating agent (TiO2 and Cr2O3) on the crystallization kinetics and heat treatment schedule of the slag were investigated. The results show that the nucleating agents changed the crystallization phase and morphology of the obtained glass-ceramics. The optimum heat treatment schedule of the glass with TiO2 was determined as nucleation at 952 K for 1.5 h and crystal growth at 1 258 K for 1.5 h, while those values with Cr203 were estimated at 971 K for 2 h and at 1 238 K for 2 h. TiO2 acting as nucleating agent could decrease the activation energy of the slag and shorten the total thermal treatment time in comparison with Cr2O3. The glass-ceramics obtained under the optimum heat treatment condition was environmentfriendly and had remarkable physical/mechanical properties and chemical durability.展开更多
The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste incinerator (MSWI) fly ash was studied by investigating the carbonation reaction of MSWI fly ash with different c...The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste incinerator (MSWI) fly ash was studied by investigating the carbonation reaction of MSWI fly ash with different combinations of simulated flue gas. The reaction between fly ash and 100% CO2 was relatively fast; the uptake of CO2 reached 87 g CO2/kg ash, and the sequestered CO2 could be entirely released at high temperatures. When CO2 content was reduced to 12%, the reaction rate decreased; the uptake fell to 41 g CO2/kg ash, and 70.7% of the sequestered CO2 could be released. With 12% CO2 in the presence of SO2, the reaction rate significantly decreased; the uptake was just 17 g CO2/kg ash, and only 52.9% of the sequestered CO2 could be released. SO2 in the simulated gas restricted the ability of fly ash to sequester CO2 because it blocked the pores of the ash.展开更多
Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast fumace slag-based cementifious material was used to stabilize/solidify the fly ash at experimental level. The...Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast fumace slag-based cementifious material was used to stabilize/solidify the fly ash at experimental level. The characteristics of the stabilized/solidified fly ash, including metal leachability, mineralogical characteristics and the distributions of metals in matrices, were tested by toxic characteristic leaching procedure (TCLP), X-ray diffrac- tion (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) respectively. Contin- uous acid extraction was utilized to extract metal ions and characterize their leaching behavior. The stabilization/ solidification procedure for MSWI fly ash demonstrates a strong fixing capacity for the metals by the formation of C- S-H phase, hydrated calcium aluminosilicate and ettringite. The stabilized/solidified fly ash shows a dense and homogeneous microstructure. Cr is mainly solidified in hydrated calcium aluminosilicate, C-S-H and ettringite phase through physical encapsulation, precipitation, adsorption or substitution mechanisms, and Pb is mainly solidified in C-S-H phase and absorbed in the Si-O structure.展开更多
Municipal solid waste incineration(MSWI)fly ash(FA)is classified as hazardous waste,which requires additional treatment before disposal or further utilization.Stabilization/solidification(S/S)is regarded as a low-cost...Municipal solid waste incineration(MSWI)fly ash(FA)is classified as hazardous waste,which requires additional treatment before disposal or further utilization.Stabilization/solidification(S/S)is regarded as a low-cost and high-efficient method for MSWI FA treatment.“Low-carbon S/S”has captured extensive interest in recent years,which could treat hazardous wastes and enable resource recycling in a sustainable way.This article introduced the state-of-art low-carbon S/S strategies for MSWI FA treatment.The immobilization mechanisms of pollutants in various matrices were also discussed.Prospects were raised to foster the actualization of sustainable management of MSWI FA.展开更多
Municipal solid waste incineration(MSWI)fly ash constitutes a hazardous waste.Melting disposal has been verified to be prospective for stabilizing heavy metals and dioxins.Release of contaminant HCl during MSWI fly as...Municipal solid waste incineration(MSWI)fly ash constitutes a hazardous waste.Melting disposal has been verified to be prospective for stabilizing heavy metals and dioxins.Release of contaminant HCl during MSWI fly ash thermal treatment leads to potential environmental risks.The behavior and transformation of chlorine are critical to the disposal strategy of MSWI fly ash.In this study,the pathway of HCl formation in MSWI fly ash thermal treatment under complex atmosphere was revealed.Results show that CaOHCl in fly ash was first decomposed to CaCl_(2),CaO and H_(2)O below 550°C,which provides H for HCl generation.Then,CaCl_(2),NaCl or KCl were reacted with H_(2)O to release HCI,during which process H_(2)O and O2 promote HCl formation,CO inhibit HCl production since H_(2)O is consumed in water-gas reaction.The initial temperature of HCl generation affected by the concentration of H_(2)O in the atmosphere.When temperature up to 1250°C,almost all NaCl or KCl were volatilized,HCl mainly from the reaction of chlorine-containing minerals with H_(2)O,such as Ca_(19.2)Mg_(2.8)(Si_(0.75)Al_(0.75))8 O36Cl_(2),Ca4(SiO4)(SO4)Cl_(2)and Ca10(SiO4)3Cl_(2)in N_(2),CO and air atmosphere separately.Moreover,in a reducing atmosphere,metals are more easily chlorinated by HCI,resulting in further consumption of HCI.The order of atmosphere for reducing HCl emissions should be CO>N_(2)>Air>>H_(2)O.展开更多
To improve the effect of MgO–SiO_(2) binders solidifying municipal solid waste incineration fly ash(MSWI FA),MSWI FA solidified bodies with five MgO/SiO_(2) ratios(0.41~3.77)were investigated.The leaching behavior of...To improve the effect of MgO–SiO_(2) binders solidifying municipal solid waste incineration fly ash(MSWI FA),MSWI FA solidified bodies with five MgO/SiO_(2) ratios(0.41~3.77)were investigated.The leaching behavior of solidified bodies was evaluated by leaching toxicity tests and pH-dependent experiments.In addition,hydration products in solidified bodies were analyzed by thermodynamic modeling and microstructure characterizations.The results showed that the variation in the MgO/SiO_(2) ratio had a significant effect on the leaching toxicity of the solidified bodies,because it affected the leachate pH and the composition of the hydration products of the solidified bodies.The acid and alkali resistance of the MSWI FA was enhanced through solidification with MgO–SiO_(2) binders.MgO can improve the alkalinity of the solidified bodies and facilitate the chemical precipitation of heavy metals.Moreover,silica fume,an industrial waste,can serve as a cost-effective measure.Overall,MgO–SiO_(2) binders demonstrated great potential as promising candidates for encapsulating MSWI FA.展开更多
Municipal solid waste incinerated(MSWI) fly ash contains heavy metals and chloride,which is urgent to be disposed via an effective method.Herein,glass-ceramics,one of the recycling waste materials based on MSWI fly as...Municipal solid waste incinerated(MSWI) fly ash contains heavy metals and chloride,which is urgent to be disposed via an effective method.Herein,glass-ceramics,one of the recycling waste materials based on MSWI fly ash with high chloride content,have been developed from one-step process.MSWI fly ash and waste glass have been utilized as calcium and silicon sources,respectively.Glass-ceramics were successfully prepared by the one-step process.It is found that the increase in MSWI fly ash promotes the fracture of glass mesh(Si-O)and the generation of non-bridging oxygen,reducing the polymerization degree of glass network structure,which leads to the decrease in glass stability.The difference between glass transition temperature(T_(g)) and crystallization temperature(T_(c)) was narrowed,and crystallization activation energy of basic glass was reduced,which promoted crystallization.With lower crystallization activation energy(E=217.56 kJ·mol^(-1)) and high utilization rate of 50 wt% MSWI fly ash,the optimal glass-ceramics with spherical diopside,cuspidine and glass phase,excellent hardness of 7.97 GPa and bending resistance of 114.86 MPa are achieved.It is worth mentioning that most of the high content of chlorine in MSWI fly ash will evaporate during vitrification process;the residual chlorine as well as heavy metals can be present steadily in crystalline grains.Therefore,this study not only increases the attachment value of MSWI fly ash,but also eliminates the problems caused by high chlorine and heavy metals in MSWI fly ash.展开更多
基金Project(20806051) supported by the National Natural Science Foundation of ChinaProject(20080440680) supported by China Postdoctoral Science Foundation
文摘Grate fly ash and fluidized bed fly ash mixed with glass cullet additive respectively were melted in the electronic arc-furnace. The product, arc-melting slag, was further treated by crushing, pressing and heat treatment in order to make the glass-ceramics. The crystallization behaviors of the produced glass-ceramics were examined by differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Results show that main crystalline phase of the glass-ceramics fi'om grate fly ash is wollastonite (CaSiO3) with small amount of diopside (Ca(Mg,Al)(Si,Al)206), and that from fluidized bed fly ash is diopside (Ca(Mg,Al)(Si,Al)206). It is found that the glass-ceramics sintered at 850 ℃and 1 000℃ from grate fly ash and fluidized bed fly ash respectively have the optimal physical, mechanical and chemical characteristics. Glass-ceramics samples, produced from incinerator fly ash with desirable properties and the low leaching concentration of heavy metals, can be the substitute of nature materials such as marble, granite and porcelain tiles.
基金Projects(51108100,50808184)supported by the National Natural Science Foundation of ChinaProject(100Z007)supported by the Ministry of Education of China+1 种基金Project(200103YB020)supported by Foundation of Guangxi Educational Committee,ChinaProject supported by Guangxi Normal University Education Development Foundation for Young Scholars,China
文摘The mechanism of removing phosphate by MSWI(municipal solid waste incineration)fly ash was investigated by SEM(scanning electron microscopy)with EDS(energy dispersion spectrum),XRD(X-ray diffraction),FT-IR(Fourier transform infrared spectroscopy),BET(specific surface area),and BJH(pore size distribution).The results indicate that the removal rate of phosphate(100 mg/L)in 50 mL phosphorus wastewater reaches at 99.9% as the dosage of MSWI fly ash being 0.9000 g under room temperature.The specific surface area of MSWI fly ash is less than 6.1 m2/g and the total pore volume is below 0.021 cm3/g,suggesting that the absorption capacity of calcite is too weak to play an important role in phosphate removal.SEM images show that drastic changes had taken place on its specific surface shape after reaction,and EDS tests indicate that some phosphate precipitates are formed and attached onto MSWI fly ash particles.Chemical precipitation is the main manner of phosphate removal and the main reaction is: 3Ca2++2 PO4 3-+xH2O→Ca3(PO4)2↓·xH2O.Besides,XRD tests show that the composition of MSWI fly ash is complex,but CaSO4 is likely to be the main source of Ca2+.The soluble heavy metals in MSWI fly ash are stabilized by phosphate.
文摘Hydrochloric acid leaching, chloride evaporation, acetic acid leaching, and biological leaching were evaluated and compared as processes of heavy metal removal for municipal solid waste incineration fly ash(MSWFA). Six factors, namely, energy consumption, process efficiency, process handling, process cost estimation, cost reduction potential, and study progress, were used in order to find out their advantages and disadvantages and to help develop a better recovery process of heavy metals from MSWFA in terms of treatment of the waste material. Hydrochloric acid leaching process was found to be most balanced among the evaluated processes. It showed superiority on energy consumption, process cost estimation, and study progress. On the other hand, despite of its excellency in process efficiency, chloride evaporation process was most unfavorable mainly due to heavy energy dependence. Biological process, with huge potential of cost reduction, was concluded to be the second best process.
文摘At present,all kinds of municipal solid waste incineration (MSWI) fly ash stabilization technology has been reported and successfully applied in many countries.However,leaching procedures are very different that the technologies lack uniform standard,and it is even impossible to predict the long-term stabilization.Geochemical model can explain the environmental stabilization based on chemical phase and thermodynamic crystal structure,and it is also able to guide the development of environment-friendly stabi...
文摘Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.
基金Funded by the National Natural Science Foundation of China(No.20806051)the Key Laboratory of Education Ministry for Solid Waste Management and Environment Safety(No.SWMES-2010-07)the Science and Technology Project of Housing and Urban-Rural Ministry(No.2010-K4-2)
文摘Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure and properties of the glass-ceramics was examined. The results show that washing pretreatment of fly ash can decrease alkali metal chloride and increase network former in fly ash, which results in the increase of peak crystallization temperature of parent glass and strengthening of properties of bending strength and chemical stability of the glass-ceramics. The optimal heat treatment temperature for parent glass of washed fly ash is 1 173 K, at which the crystalline phase of glass-ceramics is composed of gelignite (Ca2A12SiO7) and akermanite (Ca2MgSi207). Glass-ceramics produced at optimal heat treatment temperature are excellent in term of the physical and chemical properties and leaching characteristics, indicating attractive potential as substitute of nature materials.
基金Supported by the National Natural Science Foundation of China(No.51378332 and No.20806051)Science and Technology Project of Housing and Urban-Rural Ministry(No.2014-K4-014)Chinese Postdoctoral Science Foundation(No.2013M530872)
文摘Glass-ceramics obtained from the electric arc furnace molten slag of incinerator fly ash was produced by applying nucleation and crystallization through heat treatment process. The effects of nucleating agent (TiO2 and Cr2O3) on the crystallization kinetics and heat treatment schedule of the slag were investigated. The results show that the nucleating agents changed the crystallization phase and morphology of the obtained glass-ceramics. The optimum heat treatment schedule of the glass with TiO2 was determined as nucleation at 952 K for 1.5 h and crystal growth at 1 258 K for 1.5 h, while those values with Cr203 were estimated at 971 K for 2 h and at 1 238 K for 2 h. TiO2 acting as nucleating agent could decrease the activation energy of the slag and shorten the total thermal treatment time in comparison with Cr2O3. The glass-ceramics obtained under the optimum heat treatment condition was environmentfriendly and had remarkable physical/mechanical properties and chemical durability.
基金supported by the Hi-Tech Research and Development Program (863) of China (No. 2012AA06A116)
文摘The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste incinerator (MSWI) fly ash was studied by investigating the carbonation reaction of MSWI fly ash with different combinations of simulated flue gas. The reaction between fly ash and 100% CO2 was relatively fast; the uptake of CO2 reached 87 g CO2/kg ash, and the sequestered CO2 could be entirely released at high temperatures. When CO2 content was reduced to 12%, the reaction rate decreased; the uptake fell to 41 g CO2/kg ash, and 70.7% of the sequestered CO2 could be released. With 12% CO2 in the presence of SO2, the reaction rate significantly decreased; the uptake was just 17 g CO2/kg ash, and only 52.9% of the sequestered CO2 could be released. SO2 in the simulated gas restricted the ability of fly ash to sequester CO2 because it blocked the pores of the ash.
文摘Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast fumace slag-based cementifious material was used to stabilize/solidify the fly ash at experimental level. The characteristics of the stabilized/solidified fly ash, including metal leachability, mineralogical characteristics and the distributions of metals in matrices, were tested by toxic characteristic leaching procedure (TCLP), X-ray diffrac- tion (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) respectively. Contin- uous acid extraction was utilized to extract metal ions and characterize their leaching behavior. The stabilization/ solidification procedure for MSWI fly ash demonstrates a strong fixing capacity for the metals by the formation of C- S-H phase, hydrated calcium aluminosilicate and ettringite. The stabilized/solidified fly ash shows a dense and homogeneous microstructure. Cr is mainly solidified in hydrated calcium aluminosilicate, C-S-H and ettringite phase through physical encapsulation, precipitation, adsorption or substitution mechanisms, and Pb is mainly solidified in C-S-H phase and absorbed in the Si-O structure.
基金support from the Open Project of State Key Laboratory of Clean Energy Utilization,Zhejiang University(No.ZJUCEU2022001)for this study.
文摘Municipal solid waste incineration(MSWI)fly ash(FA)is classified as hazardous waste,which requires additional treatment before disposal or further utilization.Stabilization/solidification(S/S)is regarded as a low-cost and high-efficient method for MSWI FA treatment.“Low-carbon S/S”has captured extensive interest in recent years,which could treat hazardous wastes and enable resource recycling in a sustainable way.This article introduced the state-of-art low-carbon S/S strategies for MSWI FA treatment.The immobilization mechanisms of pollutants in various matrices were also discussed.Prospects were raised to foster the actualization of sustainable management of MSWI FA.
基金This work was financially supported by the National Natural Science Foundation of China(U1810127)the Youth Innovation Promotion Association,Chinese Academy of Science(Y201932).
文摘Municipal solid waste incineration(MSWI)fly ash constitutes a hazardous waste.Melting disposal has been verified to be prospective for stabilizing heavy metals and dioxins.Release of contaminant HCl during MSWI fly ash thermal treatment leads to potential environmental risks.The behavior and transformation of chlorine are critical to the disposal strategy of MSWI fly ash.In this study,the pathway of HCl formation in MSWI fly ash thermal treatment under complex atmosphere was revealed.Results show that CaOHCl in fly ash was first decomposed to CaCl_(2),CaO and H_(2)O below 550°C,which provides H for HCl generation.Then,CaCl_(2),NaCl or KCl were reacted with H_(2)O to release HCI,during which process H_(2)O and O2 promote HCl formation,CO inhibit HCl production since H_(2)O is consumed in water-gas reaction.The initial temperature of HCl generation affected by the concentration of H_(2)O in the atmosphere.When temperature up to 1250°C,almost all NaCl or KCl were volatilized,HCl mainly from the reaction of chlorine-containing minerals with H_(2)O,such as Ca_(19.2)Mg_(2.8)(Si_(0.75)Al_(0.75))8 O36Cl_(2),Ca4(SiO4)(SO4)Cl_(2)and Ca10(SiO4)3Cl_(2)in N_(2),CO and air atmosphere separately.Moreover,in a reducing atmosphere,metals are more easily chlorinated by HCI,resulting in further consumption of HCI.The order of atmosphere for reducing HCl emissions should be CO>N_(2)>Air>>H_(2)O.
基金supported by the key program of the National Natural Science Foundation of China(Grant No.52236008).
文摘To improve the effect of MgO–SiO_(2) binders solidifying municipal solid waste incineration fly ash(MSWI FA),MSWI FA solidified bodies with five MgO/SiO_(2) ratios(0.41~3.77)were investigated.The leaching behavior of solidified bodies was evaluated by leaching toxicity tests and pH-dependent experiments.In addition,hydration products in solidified bodies were analyzed by thermodynamic modeling and microstructure characterizations.The results showed that the variation in the MgO/SiO_(2) ratio had a significant effect on the leaching toxicity of the solidified bodies,because it affected the leachate pH and the composition of the hydration products of the solidified bodies.The acid and alkali resistance of the MSWI FA was enhanced through solidification with MgO–SiO_(2) binders.MgO can improve the alkalinity of the solidified bodies and facilitate the chemical precipitation of heavy metals.Moreover,silica fume,an industrial waste,can serve as a cost-effective measure.Overall,MgO–SiO_(2) binders demonstrated great potential as promising candidates for encapsulating MSWI FA.
基金financially supported by the National Key R&D Projects(Nos.2019YFC1907101,2019YFC1907103 and 2017YFB0702304)Key R&D Project in Ningxia Hui Autonomous Region(No.2020BCE01001)+4 种基金the National Natural Science Foundation of China(No.51672024)Xinjiang Innovation and Entrepreneurship Team(No.2017A0109004)the Fundamental Research Funds for the Central Universities(Nos.FRFIC-19-007,FRF-IC-19-017Z,FRF-MP-19-002,FRF-TP-19-003B1,FRF-GF-19-032B and 06500141)the State Key Laboratory for Advanced Metals and Materials(No.2019Z-05)Integration of Green Key Process Systems MIIT。
文摘Municipal solid waste incinerated(MSWI) fly ash contains heavy metals and chloride,which is urgent to be disposed via an effective method.Herein,glass-ceramics,one of the recycling waste materials based on MSWI fly ash with high chloride content,have been developed from one-step process.MSWI fly ash and waste glass have been utilized as calcium and silicon sources,respectively.Glass-ceramics were successfully prepared by the one-step process.It is found that the increase in MSWI fly ash promotes the fracture of glass mesh(Si-O)and the generation of non-bridging oxygen,reducing the polymerization degree of glass network structure,which leads to the decrease in glass stability.The difference between glass transition temperature(T_(g)) and crystallization temperature(T_(c)) was narrowed,and crystallization activation energy of basic glass was reduced,which promoted crystallization.With lower crystallization activation energy(E=217.56 kJ·mol^(-1)) and high utilization rate of 50 wt% MSWI fly ash,the optimal glass-ceramics with spherical diopside,cuspidine and glass phase,excellent hardness of 7.97 GPa and bending resistance of 114.86 MPa are achieved.It is worth mentioning that most of the high content of chlorine in MSWI fly ash will evaporate during vitrification process;the residual chlorine as well as heavy metals can be present steadily in crystalline grains.Therefore,this study not only increases the attachment value of MSWI fly ash,but also eliminates the problems caused by high chlorine and heavy metals in MSWI fly ash.