The presence of submerged vegetation on river beds can change the water flow structure and alter the state of sediment motion. In this study, the incipient motion of sediment in the presence of submerged flexible vege...The presence of submerged vegetation on river beds can change the water flow structure and alter the state of sediment motion. In this study, the incipient motion of sediment in the presence of submerged flexible vegetation in open channels was investigated in a laboratory experiment. The vegetation was simulated with flexible rubber cylinders arranged in parallel arrays. The effect of the vegetation density, water depth, and sediment grain size on the incipient motion was investigated. The experimental results indicate that the incipient motion velocity of sediment increases as the vegetation density decreases and the water depth and sediment grain size increase. With flexible plants, the incipient motion velocity of sediment is lower than it is without vegetation, and is larger than it is with rigid vegetation. A general incipient motion velocity equation was derived, which can be applied to both flexible and rigid vegetation conditions.展开更多
Summarized in the paper are the author's studies on incipient motion of sediment in recent 40 years. In addition to the forces of gravity, drag and lift, the cohesive force and the additional static pressure are i...Summarized in the paper are the author's studies on incipient motion of sediment in recent 40 years. In addition to the forces of gravity, drag and lift, the cohesive force and the additional static pressure are important for fine particles. The relations between three stages of incipient motion are defined by use of instantaneous velocity. Formulas for initial velocity and critical shear stress are given and overall verified by the author's and others' experimental data.展开更多
The Haihe cohesive sediment, which is typical in China, is studied systematically for its basic physical and incipient motion properties. Following the requirements of dredging works in the Haihe Estuary, cohesive sed...The Haihe cohesive sediment, which is typical in China, is studied systematically for its basic physical and incipient motion properties. Following the requirements of dredging works in the Haihe Estuary, cohesive sediment samples were taken from three locations. Laboratory experiments were conducted to determine the rheological properties of these samples and to examine the incipient motion of the cohesive sediment. It is found that the cohesive sediment has an obvious yield stress tau(b), which increases with the mud density in a manner of an exponential function, and so does the viscosity parameter eta. The cohesive sediment behaves like a Bingham fluid when its density is below 1.38 similar to 1.40 g/cm(3), and when denser than these values, it may become a power-law fluid. The incipient motion experiment also revealed that the incipient velocity of the cohesive sediment increases with die density in an exponential manner. Therefore, the incipient motion is primarily related to the density, which is different from the case for non-cohesive sediment in which the incipient motion is con-elated with the diameter of sand particles instead. The incipient motion occurs in two different ways depending on the concentration of mud in the bottom. For sufficiently fine particles and a concentration lower than 1.20 g/cm(3), the cohesive sediment appears as fluidized mud, and the incipient motion is in the form of instability of an internal wave. For a higher concentration, the cohesive sediment appears as general quasi-solid-mud, and the incipient motion can be described by a series of extended Shields curves each with a different porosity for newly deposited alluvial mud.展开更多
We modified the sediment incipient motion in a numerical model and evaluated the impact of this modification using a study case of the coastal area around Weihai, China. The modified and unmodified versions of the mod...We modified the sediment incipient motion in a numerical model and evaluated the impact of this modification using a study case of the coastal area around Weihai, China. The modified and unmodified versions of the model were validated by comparing simulated and observed data of currents, waves, and suspended sediment concentrations(SSC) measured from July 25^(th) to July 26^(th), 2006. A fitted Shields diagram was introduced into the sediment model so that the critical erosional shear stress could vary with time. Thus, the simulated SSC patterns were improved to more closely reflect the observed values, so that the relative error of the variation range decreased by up to 34.5% and the relative error of simulated temporally averaged SSC decreased by up to 36%. In the modified model, the critical shear stress values of the simulated silt with a diameter of 0.035 mm and mud with a diameter of 0.004 mm varied from 0.05 to 0.13 N/m^2, and from 0.05 to 0.14 N/m^2, respectively, instead of remaining constant in the unmodified model. Besides, a method of applying spatially varying fractions of the mixed grain size sediment improved the simulated SSC distribution to fit better to the remote sensing map and reproduced the zonal area with high SSC between Heini Bay and the erosion groove in the modified model. The Relative Mean Absolute Error was reduced by between 6% and 79%, depending on the regional attributes when we used the modified method to simulate incipient sediment motion. But the modification achieved the higher accuracy in this study at a cost of computation speed decreasing by 1.52%.展开更多
The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or iden...The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle's settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.展开更多
Experiments on silt incipient motion under wave action were carried out. Under wave action, for different wave periods, water depths and bulk densities of silt, the shear stress or height of waves for incipient motion...Experiments on silt incipient motion under wave action were carried out. Under wave action, for different wave periods, water depths and bulk densities of silt, the shear stress or height of waves for incipient motion was determined, and a relation between the shear stress and bulk density of silt was established. Results indicate that the critical shear stress depends on the structure of the silt itself, related to the tightness between the grains (or bulk density). Exterior condition is only an external cause of silt incipient motion, and the critical shear stress for the incipient motion is the token of exterior condition.展开更多
A formula for the calculation of critical shear stress of non-uniform sediment was developed by on river bed has been established while considering the relative degree expose of grains.The values of the Coeffi- cients...A formula for the calculation of critical shear stress of non-uniform sediment was developed by on river bed has been established while considering the relative degree expose of grains.The values of the Coeffi- cients in the formula have been obtained.The formula has been verified with prototype observation data, flumes data of both nature and lightweight sand.The computed results fully reflect the characteristics of thresh- old motion of non-uniform sediment.The result have been used in some physical mo...展开更多
Based on a series of experiments under both ice-covered and free surface conditions, the present article discusses the role of flow velocity and critical shear Reynolds number for incipient motion of bed material. The...Based on a series of experiments under both ice-covered and free surface conditions, the present article discusses the role of flow velocity and critical shear Reynolds number for incipient motion of bed material. The influence of the resistance coefficients of both the underside of the ice cover and the channel bed on the location of the maximum velocity has been discussed. In addition, the impacts of ice and composite resistance coefficients on flow velocity for incipient motion of bed material have been assessed. The diagram describing the critical shear Reynolds number and the dimensionless shear stress for the incipient motion of sediment under ice covered conditions with different under cover resistance coefficient has been established. The effects of grain size on densimetric Froude number for incipient motion of bed material have been investigated. A relationship between the densimetric Froude number for incipient motion of bed material and the median grain size of bed material as well as the roughness coefficient of channel bed and roughness coefficient of ice cover has been established.展开更多
In this paper, the forces acting on sediment particles are analyzed in all the aspects. Considering the cohesive force between particles, the additional static water pressure induced by the solid-body characteristics ...In this paper, the forces acting on sediment particles are analyzed in all the aspects. Considering the cohesive force between particles, the additional static water pressure induced by the solid-body characteristics of film water and the inertia force of waves, a unified formula of the incipient motion for both coarse and fine particles is defined. The formula can reflect the variation in the initial velocity of fine particles with the volume weight of sediment. The verification of the formula is carried out by use of both experimental data and field observation data accumulated by experts at home and abroad. The verification shows that the formula expresses the law governing the incipient motion of sediment of all particle sizes inclusive of natural sediment and light-weight materials, and thus a basic formula for the study and solution of sediment problems in estuarine and coastal regions is provided.展开更多
The incipient motion of sand particle from sand bed plays a very important role in the prediction of windblown sand.In this paper,we proposed a new method for predicting the incipient motion of sand particle based on ...The incipient motion of sand particle from sand bed plays a very important role in the prediction of windblown sand.In this paper,we proposed a new method for predicting the incipient motion of sand particle based on wind speed fluctuation as follows,when the wind speed is larger than the critical wind speed,if the total impulse on sand particle is larger than the critical impulse,incipient motion of sand particle would take place,otherwise if not.Furthermore,from the analysis of entrainment in the rolling and lifting modes,we come to the following conclusion.When the average wind speed is smaller than the critical wind speed,if the average wind speed is used to judge the incipient motion of sand particle,one will underestimate the number of sand particles jumping from the bed,if the instantaneous wind speed is used to judge incipient motion of sand particle,one will overestimate the number of sand particles jumping from the bed;When the average wind speed is larger than the critical wind speed,either the average or the instantaneous wind speeds is used to judge the incipientmotion of sand particles,one will overestimate the number of sand particles jumping from the bed.展开更多
The German Armed Forces University in Munich has conducted experiments in a laboratory flume to determine the influence of roundness on bed load transport.The investigations were assigned by the German Federal Institu...The German Armed Forces University in Munich has conducted experiments in a laboratory flume to determine the influence of roundness on bed load transport.The investigations were assigned by the German Federal Institute of Hydrology (BIG),with a focus on incipient motion,transport velocity and the depth of mixing into the riverbed. The results of the experiments show that the transport velocity of angular graim is lower and the critical shear stress for incipient motion is slightly higher than of well-ro...展开更多
Rock block removal is the prevalent physical mechanism for rock erosion and could affect the stability of dam foundations and spillways.Despite this,understanding of block removal is still inadequate because of the co...Rock block removal is the prevalent physical mechanism for rock erosion and could affect the stability of dam foundations and spillways.Despite this,understanding of block removal is still inadequate because of the complex interactions among block characteristics,hydraulic forces,and erosive processes acting on the block.Herein,based on a previously conducted physical experiment of erosion of a single rock block,the removal processes of two different protruding blocks are represented by a coupled computational fluid dynamics-discrete element model(CFD-DEM)approach under varied flow conditions.Additionally,the blocks could be rotated with respect to the flow direction to consider the effect of the discontinuity orientation on the block removal process.Simulation results visualize the entire block removal process.The simulations reproduce the effects of the discontinuity orientation on the critical flow velocity inducing block incipient motion and the trajectory of the block motion observed in the physical experiments.The numerical results present a similar tendency of the critical velocities at different discontinuity orientations but have slightly lower values.The trajectory of the block in the simulations fits well with the experimental measurements.The relationship between the dimensionless critical shear stress and discontinuity orientation observed from the simulations shows that the effect of block protrusion becomes more dominant on the block incipient motion with the increase of relative protrusion height.To our knowledge,this present study is the first attempt to use the coupled finite volume method(FVM)-DEM approach for modelling the interaction behavior between the block and the flowing water so that the block removal process can be reproduced and analyzed.展开更多
Incipient sediment motion plays a key role in scouring and bed load transport. However, the incipient sediment motion in the vegetated open-channel flows has yet to be fully understood. This study aims to quantify the...Incipient sediment motion plays a key role in scouring and bed load transport. However, the incipient sediment motion in the vegetated open-channel flows has yet to be fully understood. This study aims to quantify the critical conditions of the sediment particle movement in the presence of emergent and submerged vegetation. A new formula of the critical flow velocity was proposed to predict the incipient sediment motion based on the force balance equation of a sediment particle and the assumption that the velocity distribution in the bed roughness boundary layer fits the logarithmic law. Analysis of the derived formula revealed that the critical flow velocity for incipient sediment motion decreases with the increase in vegetation density. The proposed formula agrees well with the experimental data in the literature, thereby implying that the critical flow velocity can effectively quantify the incipient sediment motion in the vegetated open channel flows.展开更多
This paper investigates the bed shear stress based on the condition of the incipient motion of sediment in a uniform-flow flume covered with emergent rigid vegetation,which is represented by arrays of circular cylinde...This paper investigates the bed shear stress based on the condition of the incipient motion of sediment in a uniform-flow flume covered with emergent rigid vegetation,which is represented by arrays of circular cylinders arranged in a regular pattern.A total of 148 tests are performed to observe the influence of the vegetation density,bed slope,flow depth and sediment size on the bed shear stress.The tests reveal that when the sediment is in incipient motion,the resistances acting on the flow passing the rigid vegetation contain the vegetation resistance and the bed shear stress.This shear stress could be divided into two parts:the grain shear stress and the shear stress caused by sand dunes,which are the deformed bedform with the sediment incipient motion.An empirical relationship between the shear stress of the sand dune and vegetation density,the Froude number,the apparent vegetation layer velocity is developed.展开更多
Yang's (1996) sediment transport theory based on unit stream power is one ofthe most accurate theories, but in his equations the use of product of slope and critical velocityinstead for critical unit stream power ...Yang's (1996) sediment transport theory based on unit stream power is one ofthe most accurate theories, but in his equations the use of product of slope and critical velocityinstead for critical unit stream power is not suitable. Dimensionless critical unit stream powerrequired at incipient motion can be derived from the principle of conservation of power as afunction of dimensionless particle diameter and relative roughness. Based on a lot of data sets,this new criterion was developed. By use of this new criteria, Yang's (1973) sand transport formulaand his 1984 gravel transport formula could be improved when sediment concentration is less thanabout 100 ppm by weight.展开更多
基金supported by the China National Funds for Distinguished Young Scientists(Grant No.51125034)the State Key Program of the Nationa Natural Science Foundation of China(Grant No.51239003)the Nationa Natural Science Foundation of China(Grants No.51109066 and 51109065)
文摘The presence of submerged vegetation on river beds can change the water flow structure and alter the state of sediment motion. In this study, the incipient motion of sediment in the presence of submerged flexible vegetation in open channels was investigated in a laboratory experiment. The vegetation was simulated with flexible rubber cylinders arranged in parallel arrays. The effect of the vegetation density, water depth, and sediment grain size on the incipient motion was investigated. The experimental results indicate that the incipient motion velocity of sediment increases as the vegetation density decreases and the water depth and sediment grain size increase. With flexible plants, the incipient motion velocity of sediment is lower than it is without vegetation, and is larger than it is with rigid vegetation. A general incipient motion velocity equation was derived, which can be applied to both flexible and rigid vegetation conditions.
文摘Summarized in the paper are the author's studies on incipient motion of sediment in recent 40 years. In addition to the forces of gravity, drag and lift, the cohesive force and the additional static pressure are important for fine particles. The relations between three stages of incipient motion are defined by use of instantaneous velocity. Formulas for initial velocity and critical shear stress are given and overall verified by the author's and others' experimental data.
基金This research was supported by the National Natural Science Foundation of China(NSFC&RGC)under contract Nos.59809006 and 50279030and also supported by the Science Foundation of Tianjin Municipality under contract No.983702011,RGC of the Hong Kong Specia
文摘The Haihe cohesive sediment, which is typical in China, is studied systematically for its basic physical and incipient motion properties. Following the requirements of dredging works in the Haihe Estuary, cohesive sediment samples were taken from three locations. Laboratory experiments were conducted to determine the rheological properties of these samples and to examine the incipient motion of the cohesive sediment. It is found that the cohesive sediment has an obvious yield stress tau(b), which increases with the mud density in a manner of an exponential function, and so does the viscosity parameter eta. The cohesive sediment behaves like a Bingham fluid when its density is below 1.38 similar to 1.40 g/cm(3), and when denser than these values, it may become a power-law fluid. The incipient motion experiment also revealed that the incipient velocity of the cohesive sediment increases with die density in an exponential manner. Therefore, the incipient motion is primarily related to the density, which is different from the case for non-cohesive sediment in which the incipient motion is con-elated with the diameter of sand particles instead. The incipient motion occurs in two different ways depending on the concentration of mud in the bottom. For sufficiently fine particles and a concentration lower than 1.20 g/cm(3), the cohesive sediment appears as fluidized mud, and the incipient motion is in the form of instability of an internal wave. For a higher concentration, the cohesive sediment appears as general quasi-solid-mud, and the incipient motion can be described by a series of extended Shields curves each with a different porosity for newly deposited alluvial mud.
基金Supported by the National Natural Science Foundation of China(Nos.41276084,41406100)
文摘We modified the sediment incipient motion in a numerical model and evaluated the impact of this modification using a study case of the coastal area around Weihai, China. The modified and unmodified versions of the model were validated by comparing simulated and observed data of currents, waves, and suspended sediment concentrations(SSC) measured from July 25^(th) to July 26^(th), 2006. A fitted Shields diagram was introduced into the sediment model so that the critical erosional shear stress could vary with time. Thus, the simulated SSC patterns were improved to more closely reflect the observed values, so that the relative error of the variation range decreased by up to 34.5% and the relative error of simulated temporally averaged SSC decreased by up to 36%. In the modified model, the critical shear stress values of the simulated silt with a diameter of 0.035 mm and mud with a diameter of 0.004 mm varied from 0.05 to 0.13 N/m^2, and from 0.05 to 0.14 N/m^2, respectively, instead of remaining constant in the unmodified model. Besides, a method of applying spatially varying fractions of the mixed grain size sediment improved the simulated SSC distribution to fit better to the remote sensing map and reproduced the zonal area with high SSC between Heini Bay and the erosion groove in the modified model. The Relative Mean Absolute Error was reduced by between 6% and 79%, depending on the regional attributes when we used the modified method to simulate incipient sediment motion. But the modification achieved the higher accuracy in this study at a cost of computation speed decreasing by 1.52%.
文摘The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle's settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.
基金This research was financially supported by the High Technology Research and Development Programof China(863 Program,Grant No.2002AA601011)
文摘Experiments on silt incipient motion under wave action were carried out. Under wave action, for different wave periods, water depths and bulk densities of silt, the shear stress or height of waves for incipient motion was determined, and a relation between the shear stress and bulk density of silt was established. Results indicate that the critical shear stress depends on the structure of the silt itself, related to the tightness between the grains (or bulk density). Exterior condition is only an external cause of silt incipient motion, and the critical shear stress for the incipient motion is the token of exterior condition.
基金Supported by Doctorial Fund of Ministry of Education (2002-173) and (2003-172)
文摘A formula for the calculation of critical shear stress of non-uniform sediment was developed by on river bed has been established while considering the relative degree expose of grains.The values of the Coeffi- cients in the formula have been obtained.The formula has been verified with prototype observation data, flumes data of both nature and lightweight sand.The computed results fully reflect the characteristics of thresh- old motion of non-uniform sediment.The result have been used in some physical mo...
基金the National Natural Science Foundation of China (Grant No.10372028).
文摘Based on a series of experiments under both ice-covered and free surface conditions, the present article discusses the role of flow velocity and critical shear Reynolds number for incipient motion of bed material. The influence of the resistance coefficients of both the underside of the ice cover and the channel bed on the location of the maximum velocity has been discussed. In addition, the impacts of ice and composite resistance coefficients on flow velocity for incipient motion of bed material have been assessed. The diagram describing the critical shear Reynolds number and the dimensionless shear stress for the incipient motion of sediment under ice covered conditions with different under cover resistance coefficient has been established. The effects of grain size on densimetric Froude number for incipient motion of bed material have been investigated. A relationship between the densimetric Froude number for incipient motion of bed material and the median grain size of bed material as well as the roughness coefficient of channel bed and roughness coefficient of ice cover has been established.
文摘In this paper, the forces acting on sediment particles are analyzed in all the aspects. Considering the cohesive force between particles, the additional static water pressure induced by the solid-body characteristics of film water and the inertia force of waves, a unified formula of the incipient motion for both coarse and fine particles is defined. The formula can reflect the variation in the initial velocity of fine particles with the volume weight of sediment. The verification of the formula is carried out by use of both experimental data and field observation data accumulated by experts at home and abroad. The verification shows that the formula expresses the law governing the incipient motion of sediment of all particle sizes inclusive of natural sediment and light-weight materials, and thus a basic formula for the study and solution of sediment problems in estuarine and coastal regions is provided.
基金supported by the National Natural Science Foundation of China(11072097,11232006,11202088,10972164,and11121202)the Science Foundation of Ministry of Education of China(308022)+1 种基金Science and technology project of Gansu Province(1208RJYA006)National Key Technology R&D Program(2013BAC07B01)
文摘The incipient motion of sand particle from sand bed plays a very important role in the prediction of windblown sand.In this paper,we proposed a new method for predicting the incipient motion of sand particle based on wind speed fluctuation as follows,when the wind speed is larger than the critical wind speed,if the total impulse on sand particle is larger than the critical impulse,incipient motion of sand particle would take place,otherwise if not.Furthermore,from the analysis of entrainment in the rolling and lifting modes,we come to the following conclusion.When the average wind speed is smaller than the critical wind speed,if the average wind speed is used to judge the incipient motion of sand particle,one will underestimate the number of sand particles jumping from the bed,if the instantaneous wind speed is used to judge incipient motion of sand particle,one will overestimate the number of sand particles jumping from the bed;When the average wind speed is larger than the critical wind speed,either the average or the instantaneous wind speeds is used to judge the incipientmotion of sand particles,one will overestimate the number of sand particles jumping from the bed.
文摘The German Armed Forces University in Munich has conducted experiments in a laboratory flume to determine the influence of roundness on bed load transport.The investigations were assigned by the German Federal Institute of Hydrology (BIG),with a focus on incipient motion,transport velocity and the depth of mixing into the riverbed. The results of the experiments show that the transport velocity of angular graim is lower and the critical shear stress for incipient motion is slightly higher than of well-ro...
文摘Rock block removal is the prevalent physical mechanism for rock erosion and could affect the stability of dam foundations and spillways.Despite this,understanding of block removal is still inadequate because of the complex interactions among block characteristics,hydraulic forces,and erosive processes acting on the block.Herein,based on a previously conducted physical experiment of erosion of a single rock block,the removal processes of two different protruding blocks are represented by a coupled computational fluid dynamics-discrete element model(CFD-DEM)approach under varied flow conditions.Additionally,the blocks could be rotated with respect to the flow direction to consider the effect of the discontinuity orientation on the block removal process.Simulation results visualize the entire block removal process.The simulations reproduce the effects of the discontinuity orientation on the critical flow velocity inducing block incipient motion and the trajectory of the block motion observed in the physical experiments.The numerical results present a similar tendency of the critical velocities at different discontinuity orientations but have slightly lower values.The trajectory of the block in the simulations fits well with the experimental measurements.The relationship between the dimensionless critical shear stress and discontinuity orientation observed from the simulations shows that the effect of block protrusion becomes more dominant on the block incipient motion with the increase of relative protrusion height.To our knowledge,this present study is the first attempt to use the coupled finite volume method(FVM)-DEM approach for modelling the interaction behavior between the block and the flowing water so that the block removal process can be reproduced and analyzed.
基金supported by the National Natural Science Foundation of China(Grant Nos.52020105006,11872285).
文摘Incipient sediment motion plays a key role in scouring and bed load transport. However, the incipient sediment motion in the vegetated open-channel flows has yet to be fully understood. This study aims to quantify the critical conditions of the sediment particle movement in the presence of emergent and submerged vegetation. A new formula of the critical flow velocity was proposed to predict the incipient sediment motion based on the force balance equation of a sediment particle and the assumption that the velocity distribution in the bed roughness boundary layer fits the logarithmic law. Analysis of the derived formula revealed that the critical flow velocity for incipient sediment motion decreases with the increase in vegetation density. The proposed formula agrees well with the experimental data in the literature, thereby implying that the critical flow velocity can effectively quantify the incipient sediment motion in the vegetated open channel flows.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB403303)the China National Funds for Distinguished Young Scientists (Grant No. 51125034)the National Natural Science Foundation of China (Grant Nos. 50879019,51109065,51239003)
文摘This paper investigates the bed shear stress based on the condition of the incipient motion of sediment in a uniform-flow flume covered with emergent rigid vegetation,which is represented by arrays of circular cylinders arranged in a regular pattern.A total of 148 tests are performed to observe the influence of the vegetation density,bed slope,flow depth and sediment size on the bed shear stress.The tests reveal that when the sediment is in incipient motion,the resistances acting on the flow passing the rigid vegetation contain the vegetation resistance and the bed shear stress.This shear stress could be divided into two parts:the grain shear stress and the shear stress caused by sand dunes,which are the deformed bedform with the sediment incipient motion.An empirical relationship between the shear stress of the sand dune and vegetation density,the Froude number,the apparent vegetation layer velocity is developed.
文摘Yang's (1996) sediment transport theory based on unit stream power is one ofthe most accurate theories, but in his equations the use of product of slope and critical velocityinstead for critical unit stream power is not suitable. Dimensionless critical unit stream powerrequired at incipient motion can be derived from the principle of conservation of power as afunction of dimensionless particle diameter and relative roughness. Based on a lot of data sets,this new criterion was developed. By use of this new criteria, Yang's (1973) sand transport formulaand his 1984 gravel transport formula could be improved when sediment concentration is less thanabout 100 ppm by weight.