The Yellow River is usually assumed to record tectonic activities and climatic changes;however,a systematic study was lack in the sedimentology,stratigraphy,geomorphology and geochronology for the entire Yellow River ...The Yellow River is usually assumed to record tectonic activities and climatic changes;however,a systematic study was lack in the sedimentology,stratigraphy,geomorphology and geochronology for the entire Yellow River though various geologic scholars have conducted numerous works in individual basins.This review focused on well-preserved fluvial terrace sequences that formed along this river on northeastern(NE)Tibetan Plateau and Ordos Block over the past 2.6 Ma.After comparing numerous initial incision ages at different segments along the Yellow River,we found out that the youngest initial incision may occur at ca.150 ka at the Longyang Gorge.The Yellow River may transit from multiple separated endorheic drainages to an entire external drainage after 150 ka,which may cause differentiations in the apparent incision rates before and after 150 ka;thus apparent net incision rates were calculated respectively for the Yellow River before 150 ka and the drainage network post 150 ka.Apparent net incision rates prior to 0.15 Ma were calculated as 0.15,0.29,0.10,0.12 and 0.03 mm/a respectively in Tongde-Xunhua,Lanzhou-Linxia basins,Heishan,Jinshan and Fenwei-Sanmen Gorges in this review,which mainly reflected Kunhuang-Gonghe Tectonic Event,generated by the Indo-Asian collision and diminishing as the NE Tibetan Plateau eastward extruding at ca.1.8-0.15 Ma.Apparent net incision rates post 0.15 Ma were calculated respectively for NE Tibetan Plateau and Ordos Block,considering their different base level.On NE Tibetan Plateau,four fluvial degradational phases were identified between ca.105~70,53~40,25~16 and 12~6 ka associated with terrace levels respectively,at average elevations of 96,40,20 and 10.5 meters above the current river level(m arl)within a range of 5~96 m arl;and four broad periods in the last 150 ka on Ordos Block:possibly marine oxygen isotope stage(MIS)5,ca.118 to 72 ka,most of MIS 3,ca.44~28 ka,transition from LGM to last deglacial ca.20 to 16 ka,and 4~3 ka at average elevations of 67.5,26,19 and 11.5 m arl.These degradational phases post 0.15 Ma were associated with multiple processes including enhanced fluvial discharge with an increase in monsoonal precipitation and/or melt water in deglaciation.展开更多
River incision and drainage reorganization have an important impact on the site selection of many major projects including city,road and others,and are the key issues of Quaternary environmental changes.Studies of riv...River incision and drainage reorganization have an important impact on the site selection of many major projects including city,road and others,and are the key issues of Quaternary environmental changes.Studies of river incision and river-network adjustment have traditionally been based on extensive field evidence,such as sediment age and beheaded river system.The Buyuan River basin is a large sub-basin of the upper Lancang-Mekong,with high mountains and extremely active erosion.The latter affects the preservation of the Quaternary period sediments leading to difficulties in understanding the main evolution characteristics of the basin.This study investigates differences in the equilibrium state of the longitudinal profile,infers incision rates,and evaluates drainage divide migration timelines using the stream-power incision model,the latest morphological dating,and Chi-plots(χ–z) based on digital elevation models(DEMs) on the GIS software platform.The final results show that two significant erosion base-level decreases occurred in the Late Pleistocene at least.The incision rate of the mainstream might have been 0–2.99 mm/yr since 100 ka BP and 0–3.28 mm/yr since 46 ka BP.The Chi-values across the divides suggest that space limited(or constrained) river reorganization and that there is no severe reorganization in the basin;the imbalance of traceable erosion only exists in local areas.The main driving force for the geomorphologic evolution of the Buyuan River basin is likely climate fluctuations rather than strong tectonic uplift since the Late Pleistocene.展开更多
Landscape evolution is modulated by the regional tectonic uplift,climate change,and river dynamics.However,how to distinguish these mechanisms through the research of surface exhumation and fluvial incision remains co...Landscape evolution is modulated by the regional tectonic uplift,climate change,and river dynamics.However,how to distinguish these mechanisms through the research of surface exhumation and fluvial incision remains controversial.In this study,cosmogenic ^(10)Be,^(26)Al,and ^(21)Ne concentrations in quartz from cave deposits,modern river sediments,and bedrocks were measured to constrain the applicability of cosmogenic ^(21)Ne and discuss Quaternary landscape evolution history in the Guizhou Plateau,southeast China.Using the ^(26)Al-^(10)Be and ^(21)Ne-^(10)Be pairs to distinguish the cosmogenic ^(21)Ne concentration from the excess ^(21)Ne,we found that the nucleogenic ^(21)Ne produced by the U and Th decay in quartz is significant in the samples although there is the possibility of inherited cosmogenic ^(21)Ne.Combining with previous studies,we suggest that the precise approach for applying the cosmogenic ^(21)Ne could be reached by(1)estimating the contribution from nucleogenic ^(21)Ne,(2)avoiding samples with complex burial histories to exclude inherited cosmogenic ^(21)Ne,and(3)combining the ^(10)Be-^(26)Al-^(21)Ne nuclides method for the Quaternary samples.In addition,both pre-burial basin denudation rates and burial ages derived from the ^(26)Al-^(10)Be pair were used to determine the different timescale surface denudation rate and fluvial incision rate in relation to previous work.The consistency of the different timescales pre-burial basin denudation rate,^(36)Cl surface denudation rate,and modern basin denudation rate indicates that the landscape-scale surface denudation has been likely stabilized since the Quaternary in the Guizhou Plateau area.The slightly higher river incision rates than the local surface denudation rate show that the river dynamics may not have reached a steady-state due to the regional tectonic uplift in the Guizhou Plateau.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41472155),Grant No.ZR2022QD083,LYHZW202248 and NSFC 417644073Cultivating Young Talents in the Universities of Shandong Province(LUJIAOKEHAN2021-51,granted to L.Yu)。
文摘The Yellow River is usually assumed to record tectonic activities and climatic changes;however,a systematic study was lack in the sedimentology,stratigraphy,geomorphology and geochronology for the entire Yellow River though various geologic scholars have conducted numerous works in individual basins.This review focused on well-preserved fluvial terrace sequences that formed along this river on northeastern(NE)Tibetan Plateau and Ordos Block over the past 2.6 Ma.After comparing numerous initial incision ages at different segments along the Yellow River,we found out that the youngest initial incision may occur at ca.150 ka at the Longyang Gorge.The Yellow River may transit from multiple separated endorheic drainages to an entire external drainage after 150 ka,which may cause differentiations in the apparent incision rates before and after 150 ka;thus apparent net incision rates were calculated respectively for the Yellow River before 150 ka and the drainage network post 150 ka.Apparent net incision rates prior to 0.15 Ma were calculated as 0.15,0.29,0.10,0.12 and 0.03 mm/a respectively in Tongde-Xunhua,Lanzhou-Linxia basins,Heishan,Jinshan and Fenwei-Sanmen Gorges in this review,which mainly reflected Kunhuang-Gonghe Tectonic Event,generated by the Indo-Asian collision and diminishing as the NE Tibetan Plateau eastward extruding at ca.1.8-0.15 Ma.Apparent net incision rates post 0.15 Ma were calculated respectively for NE Tibetan Plateau and Ordos Block,considering their different base level.On NE Tibetan Plateau,four fluvial degradational phases were identified between ca.105~70,53~40,25~16 and 12~6 ka associated with terrace levels respectively,at average elevations of 96,40,20 and 10.5 meters above the current river level(m arl)within a range of 5~96 m arl;and four broad periods in the last 150 ka on Ordos Block:possibly marine oxygen isotope stage(MIS)5,ca.118 to 72 ka,most of MIS 3,ca.44~28 ka,transition from LGM to last deglacial ca.20 to 16 ka,and 4~3 ka at average elevations of 67.5,26,19 and 11.5 m arl.These degradational phases post 0.15 Ma were associated with multiple processes including enhanced fluvial discharge with an increase in monsoonal precipitation and/or melt water in deglaciation.
基金National Key R&D Program of China,No.2016YFA0601601China Postdoctoral Science Foundation,No.2019M653506National Science and Technology Support Program of China,No.2013BAB06B03。
文摘River incision and drainage reorganization have an important impact on the site selection of many major projects including city,road and others,and are the key issues of Quaternary environmental changes.Studies of river incision and river-network adjustment have traditionally been based on extensive field evidence,such as sediment age and beheaded river system.The Buyuan River basin is a large sub-basin of the upper Lancang-Mekong,with high mountains and extremely active erosion.The latter affects the preservation of the Quaternary period sediments leading to difficulties in understanding the main evolution characteristics of the basin.This study investigates differences in the equilibrium state of the longitudinal profile,infers incision rates,and evaluates drainage divide migration timelines using the stream-power incision model,the latest morphological dating,and Chi-plots(χ–z) based on digital elevation models(DEMs) on the GIS software platform.The final results show that two significant erosion base-level decreases occurred in the Late Pleistocene at least.The incision rate of the mainstream might have been 0–2.99 mm/yr since 100 ka BP and 0–3.28 mm/yr since 46 ka BP.The Chi-values across the divides suggest that space limited(or constrained) river reorganization and that there is no severe reorganization in the basin;the imbalance of traceable erosion only exists in local areas.The main driving force for the geomorphologic evolution of the Buyuan River basin is likely climate fluctuations rather than strong tectonic uplift since the Late Pleistocene.
基金supported by the National Natural Science Foundation of China(Grant No.41930642)。
文摘Landscape evolution is modulated by the regional tectonic uplift,climate change,and river dynamics.However,how to distinguish these mechanisms through the research of surface exhumation and fluvial incision remains controversial.In this study,cosmogenic ^(10)Be,^(26)Al,and ^(21)Ne concentrations in quartz from cave deposits,modern river sediments,and bedrocks were measured to constrain the applicability of cosmogenic ^(21)Ne and discuss Quaternary landscape evolution history in the Guizhou Plateau,southeast China.Using the ^(26)Al-^(10)Be and ^(21)Ne-^(10)Be pairs to distinguish the cosmogenic ^(21)Ne concentration from the excess ^(21)Ne,we found that the nucleogenic ^(21)Ne produced by the U and Th decay in quartz is significant in the samples although there is the possibility of inherited cosmogenic ^(21)Ne.Combining with previous studies,we suggest that the precise approach for applying the cosmogenic ^(21)Ne could be reached by(1)estimating the contribution from nucleogenic ^(21)Ne,(2)avoiding samples with complex burial histories to exclude inherited cosmogenic ^(21)Ne,and(3)combining the ^(10)Be-^(26)Al-^(21)Ne nuclides method for the Quaternary samples.In addition,both pre-burial basin denudation rates and burial ages derived from the ^(26)Al-^(10)Be pair were used to determine the different timescale surface denudation rate and fluvial incision rate in relation to previous work.The consistency of the different timescales pre-burial basin denudation rate,^(36)Cl surface denudation rate,and modern basin denudation rate indicates that the landscape-scale surface denudation has been likely stabilized since the Quaternary in the Guizhou Plateau area.The slightly higher river incision rates than the local surface denudation rate show that the river dynamics may not have reached a steady-state due to the regional tectonic uplift in the Guizhou Plateau.