Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entr...Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entry retaining in a thin seam with a large inclined angle. The results show that during exploitation in seams with large inclined angle, rotational subsidence of the main roof under the gob area is small and can maintain balance, so there is no need to provide artificial permanent support resistance for the main roof near the upper side to control rotational subsidence. Obstructed by the dense scrap rail,waste rock from the immediate roof caving slides from the upper gob area to the lower area and fills it,which strikes a balance between the immediate roof under the goaf after it fractures into large pieces and filling waste rocks.展开更多
The critical current density behaviors across a bicrystal grain boundary(GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated.There are...The critical current density behaviors across a bicrystal grain boundary(GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated.There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field:(i) the GB plane area determines the current carrying cross section;(ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force.Furthermore,the vortex motion in a bicrystal GB is studied by investigating transverse(Hall) and longitudinal current–voltage characteristics(I–Vxx and I–Vxy).It is found that the I–Vxx curve diverges from linearity at a high driving current,while the I–Vxy curve keeps nearly linear,which indicates the vortices inside the GB break out of the GB by Lorentz force.展开更多
This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO...This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity.展开更多
Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me...Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.展开更多
Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting perfo...Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.展开更多
A stability analysis approach of tunnel face considering a longitudinally inclined tunnel angle and anisotropic purely cohesive soils based on a continuous velocity field (CVF) is investigated in this study. Based on ...A stability analysis approach of tunnel face considering a longitudinally inclined tunnel angle and anisotropic purely cohesive soils based on a continuous velocity field (CVF) is investigated in this study. Based on the kinematic approach of limit analysis and the discretization technique, an improved three-dimensional CVF model for longitudinally inclined tunnels driven by pressurized shields is proposed. With the proposed model, the critical support pressure acted on tunnel face is determined by the work-balance equation. A serial of finite element numerical models are conducted to validate the proposed model. Finally, the effects of tunnel inclination angles, several dimensionless parameters as well as soil anisotropy on the critical support pressure are investigated. The numerical results show that the effects of the soil anisotropy and the tunnel inclination angle on tunnel faces should be considered in the actual design of tunneling engineering.展开更多
Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's in...Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. Results indicate that the pile's operationally optimal degree of inclination is approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils.展开更多
For laser assisted machining,shape of preheating laser heat source is changed irregularly because of complexity of material shape.So,the preheating temperature should be controlled by adjusting the feed rate or the la...For laser assisted machining,shape of preheating laser heat source is changed irregularly because of complexity of material shape.So,the preheating temperature should be controlled by adjusting the feed rate or the laser power.Thermal analyses of the laser assisted machining process for inclination planes were performed.By analyzing the obtained temperature profile,a proper feed rate control method was proposed according to the inclination angles.In addition,the temperature distribution of the cross section after feed rate control was predicted.The correlation equation between inclination angles and adjusted proper feed rate was proposed.The results of this analysis can be used to predict the preheating effect on workpiece and can be applied as a preheating temperature control method in laser assisted machining processes.展开更多
A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affect...A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affecting plant type in rice. The accuracy of the simulation results was validated by measured values from a field experiment. The coefficient of determination (R2) and the root mean square error (RMSE) between the simulated and measured values were 0.9472 and 3.93%, respectively. The simulation results showed that the distribution of leaf inclination angles differed among the three plant types. The leaf inclination angles were larger in the compact variety Liangyoupeijiu with erect leaves than in the loose variety Shanyou 63 with droopy leaves and the intermediate variety Liangyou Y06. The leaf inclination angles were distributed in the lower range in Shanyou 63, which matched up with field measurements. The distribution of leaf inclination angles in the same variety changed throughout the seven growth stages. The leaf inclination angles enlarged gradually from transplanting to booting. During the post-booting period, the leaf inclination angle increased in Shanyou 63 and Liangyou Y06, but changed little in Liangyoupeijiu. At every growth stage of each variety, canopy leaf inclination angle distribution on the six heights of canopy layers was variable. As canopy height increased, the layered leaf area index (LAI) decreased in all the three plant types. However, while the leaf inclination angles showed little change in Liangyoupeijiu, they became larger in Shanyou 63 but smaller in Liangyou Y06. The simulation results used in the constructed model were very similar to the actual measurement values. The model provides a method for estimating canopy leaf inclination angle distribution in rice production.展开更多
There are amounts of issues to be resolved in the process of designing the fiber placement trajectory of the cylindrical component,such as the interference between the machine and the component and the over-travel of ...There are amounts of issues to be resolved in the process of designing the fiber placement trajectory of the cylindrical component,such as the interference between the machine and the component and the over-travel of the axis of rotation on the fiber placement head.When the pressure on the cylinder surface inclines in a certain direction or at an angle within the normal plane,the motion characteristics of the rotation axis will be different.This paper analyzes the pressure angle effect of the concave cylinder surface on the motion features of a fiber placement machine.The placement area is enlarged by tilting pressure with the same lifting stroke,which is significant in preventing interference and selecting post-processing algorithm.展开更多
The effects of oblique submerged scouring jets on sand beds with various particle sizes have been studied experimentally.In particular,a total of 25 experiments have been carried out to explore the influences of the j...The effects of oblique submerged scouring jets on sand beds with various particle sizes have been studied experimentally.In particular,a total of 25 experiments have been carried out to explore the influences of the jet angle and application time on the considered submerged sand beds.Test results conducted with a specially-designed device have shown that the scouring efficiency attains a maximum when the inclination angle is in the range between 15°and 20°and then it decreases when the inclination angle becomes higher.展开更多
Experiments were conducted to investigate the dynamics of an oscillating bubble generated by a spark in the presence of an inclined attached air bubble.The study primarily focused on the influence of the inclination a...Experiments were conducted to investigate the dynamics of an oscillating bubble generated by a spark in the presence of an inclined attached air bubble.The study primarily focused on the influence of the inclination angle on the behavior of bubble jetting orientation,air bubble shape modes,and motion characteristics of the interaction between the two bubbles.Various complex bubble jetting behaviors were observed,including the presence of multiple types of bubble jetting directions,bubble splitting,and multidirectional jets.Four types of air bubble shapes were defined,namely inclined cup cover-shaped(with and without splitting),double-peaked cup cover-shaped,and inclined L-shaped air bubbles.The formation of different types of bubble jets was analyzed using the vector synthesis principle of the Bjerknes force exerted by the inclined attached air bubble and a steel plate.To describe the diverse orientations of bubble jetting and air bubble shapes,new parameters namely the dimensionless spark bubble oscillation time T^(*)and volume ratio V^(*)that consider the inclination angle are proposed.The findings of this investigation contribute to the existing knowledge and have the potential to further enhance methods for mitigating cavitation damage in marine,hydraulic machinery systems,and medical fields.l fields.展开更多
Combining lubrication theory and CFD technology, a finite element model is established to simulate the rain-wind-induced vibration(RWIV). Based on Spalart-Allmaras(S-A)turbulence type, COMSOL software is adopted to ca...Combining lubrication theory and CFD technology, a finite element model is established to simulate the rain-wind-induced vibration(RWIV). Based on Spalart-Allmaras(S-A)turbulence type, COMSOL software is adopted to calculate the wind pressure coefficient and wind friction coefficient that vary with the location and time. To verify the veracity and rationality of this method, the formation and evolution of rivulets at different wind speeds are studied and compared with the existing experimental results. Furthermore, the time, location, height and width of the initial formation of rivulets are analyzed at different wind speeds, cable inclination angles and wind yaw angles. The results show that the three influencing factors mentioned above have great effect on the formation of rivulet, and the influencing tendency, range and degree are different from each other.展开更多
The present study deals with double-diffusive convection within a two-dimensional inclined cavity filled with an air-CO_(2) binary gas mixture.The left and the right vertical walls are differentially heated and subjec...The present study deals with double-diffusive convection within a two-dimensional inclined cavity filled with an air-CO_(2) binary gas mixture.The left and the right vertical walls are differentially heated and subjected to different locations of(CO_(2))contaminants to allow for the variation of the buoyancy strength(N).However,the horizontal walls are assumed adiabatic.The simulations are conducted using the finite volume method to solve the conservation equations of continuity,momentum,energy,and species transport.Good agreement with other numerical results in the literature is obtained.The effect of multiple parameters,namely,buoyancy ratio(N),thermal Rayleigh number(Ra),and inclination angle(α)on entropy generation rate is analyzed and discussed in the postprocessing stage,while considering both laminar and turbulent flow regimes.The computations reveal that these parameters considerably affect both the heat and mass transfer performances of the system.展开更多
The effect of the tilt angle on mixed convection and related heat transfer in a“T”shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated.The considered obstacles are con...The effect of the tilt angle on mixed convection and related heat transfer in a“T”shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated.The considered obstacles are constantly kept at a relatively high(fixed)temperature,while the cavity’s upper wall is cooled.The finite volume approach is used to solve the mass,momentum,and energy equations with the SIMPLEC algorithm being exploited to deal with the pressure-velocity coupling.Emphasis is put on the influence of the tilt angle on the solution symmetry,flow structure,and heat exchange through the walls.The following parameters and related ranges are considered:Rayleigh number 104≤Ra≤5.105,tilt angle 0°≤φ≤90°,Reynolds number 100≤Re≤1000,Prandtl number Pr=0.72,block height B=0.5,opening width C=0.15,and distance between blocks D=0.5.The results reveal different branches of solutions on varying Re andφ.They also show that the symmetry of the solution regarding the P_(2)axis is retained for all cases with no tilt and for values of Re between 100 and 1000.展开更多
The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and com...The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance.展开更多
Based on the stress redistribution analysis of rock mass during the deep underground excavation, the unloading process of pre-flawed rock material was simulated by distinct element method (DEM). The effects of unloadi...Based on the stress redistribution analysis of rock mass during the deep underground excavation, the unloading process of pre-flawed rock material was simulated by distinct element method (DEM). The effects of unloading rate and flaw inclination angle on unloading strengths and cracking properties of pre-flawed rock specimens are numerically revealed. The results indicate that the unloading failure strength of pre-flawed specimen exhibits a power-function increase trend with the increase of unloading period. Moreover, combined with the stress state analysis on the flaws, it is found that the unloading failure strength increases with the increase of flaw inclination angle. The cracking distribution of pre-flawed specimens under the unloading condition closely depends on the flaw inclination angle, and three typical types of flaw coalescence are observed. Furthermore, at a faster unloading rate, the pre-flawed specimen experiences a sharper and quicker unloading failure process, resulting in more splitting cracks in the specimens.展开更多
Experimental investigations into the effects of the magnetic field configuration near the channel exit on the plume of Hall thrusters were conducted. The magnetic field configuration near the channel exit is character...Experimental investigations into the effects of the magnetic field configuration near the channel exit on the plume of Hall thrusters were conducted. The magnetic field configuration near the channel exit is characterized by the inclination angle between the magnetic field lines and the thruster radial direction. Different inclination angles were obtained by varying the current ratio in the coils. The plume divergence angles were measured by a dual-directed probe. The results showed that the plume divergence angle increased obviously with the increase in the magnitude of the inclination angle near the channel exit. Therefore, in order to optimize the magnetic field for reducing plume divergence, the magnitude of the inclination angle should be reduced as much as possible. It suggests that the magnetic field configuration near the channel exit is another important factor that affects plume divergence.展开更多
Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simu...Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simulate the electric field in a 75 kA drained aluminum reduction cell. The current distribution and influences of the cathode inclination angle and anode-cathode distance (ACD) were studied. The results show that relatively large horizontal current density appears in the aluminum film, and the maximum value reaches 600 kA/m2. As the cathode inclination angle increases from 2° to 15°, the maximum current density of the metal pad increases by 15%, while the maximum current density of the aluminum-wettable coating layer decreases by 27%. The influence of the ACD on the current distribution is not obvious.展开更多
To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of...To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of various meteorological parameters namely the monthly averaged value of maximum temperature, minimum temperature, humidity and sunshine hours were used in this study. Assessment of the solar resources for the solar based renewable energy technologies of Bangladesh may be based upon this kind of measured data analyzed study. This study tried to estimate the monthly averaged solar radiation by presenting data in table and graph and finally analyze through equations and descriptions. Correlation between the measurements of monthly averaged solar radiation and the meteorological parameters was given for the selected 10 stations in Bangladesh. In conclusion, we tried to make a comparison among solar radiation on horizontal surface, fixed 20.83<sup> ° </sup> (degree) optimal tilt angle and variable optimal tilt surface at Dhaka station.展开更多
基金Financial support for this work was provided by the National Natural Science Foundation of China(No.51104176)
文摘Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entry retaining in a thin seam with a large inclined angle. The results show that during exploitation in seams with large inclined angle, rotational subsidence of the main roof under the gob area is small and can maintain balance, so there is no need to provide artificial permanent support resistance for the main roof near the upper side to control rotational subsidence. Obstructed by the dense scrap rail,waste rock from the immediate roof caving slides from the upper gob area to the lower area and fills it,which strikes a balance between the immediate roof under the goaf after it fractures into large pieces and filling waste rocks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61501222,61371036,and 61571219)the School Scientific Research Fund of Nanjing Institute of Technology,China(Grant Nos.YKJ201418)
文摘The critical current density behaviors across a bicrystal grain boundary(GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated.There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field:(i) the GB plane area determines the current carrying cross section;(ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force.Furthermore,the vortex motion in a bicrystal GB is studied by investigating transverse(Hall) and longitudinal current–voltage characteristics(I–Vxx and I–Vxy).It is found that the I–Vxx curve diverges from linearity at a high driving current,while the I–Vxy curve keeps nearly linear,which indicates the vortices inside the GB break out of the GB by Lorentz force.
文摘This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity.
文摘Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.
基金Project(U1865203)supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of ChinaProject(51279201)supported by the National Natural Science Foundation of ChinaProjects(2019YFC0605103,2019YFC0605100)supported by the National Key R&D Program of China。
文摘Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.
基金Project(2017YFB1201204)supported by the National Key Research and Development Program of China
文摘A stability analysis approach of tunnel face considering a longitudinally inclined tunnel angle and anisotropic purely cohesive soils based on a continuous velocity field (CVF) is investigated in this study. Based on the kinematic approach of limit analysis and the discretization technique, an improved three-dimensional CVF model for longitudinally inclined tunnels driven by pressurized shields is proposed. With the proposed model, the critical support pressure acted on tunnel face is determined by the work-balance equation. A serial of finite element numerical models are conducted to validate the proposed model. Finally, the effects of tunnel inclination angles, several dimensionless parameters as well as soil anisotropy on the critical support pressure are investigated. The numerical results show that the effects of the soil anisotropy and the tunnel inclination angle on tunnel faces should be considered in the actual design of tunneling engineering.
文摘Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. Results indicate that the pile's operationally optimal degree of inclination is approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils.
基金Project(2011-0017407)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)
文摘For laser assisted machining,shape of preheating laser heat source is changed irregularly because of complexity of material shape.So,the preheating temperature should be controlled by adjusting the feed rate or the laser power.Thermal analyses of the laser assisted machining process for inclination planes were performed.By analyzing the obtained temperature profile,a proper feed rate control method was proposed according to the inclination angles.In addition,the temperature distribution of the cross section after feed rate control was predicted.The correlation equation between inclination angles and adjusted proper feed rate was proposed.The results of this analysis can be used to predict the preheating effect on workpiece and can be applied as a preheating temperature control method in laser assisted machining processes.
基金financially supported by the National Natural Science Foundation of China (Grant No. NSFC 30871479)
文摘A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affecting plant type in rice. The accuracy of the simulation results was validated by measured values from a field experiment. The coefficient of determination (R2) and the root mean square error (RMSE) between the simulated and measured values were 0.9472 and 3.93%, respectively. The simulation results showed that the distribution of leaf inclination angles differed among the three plant types. The leaf inclination angles were larger in the compact variety Liangyoupeijiu with erect leaves than in the loose variety Shanyou 63 with droopy leaves and the intermediate variety Liangyou Y06. The leaf inclination angles were distributed in the lower range in Shanyou 63, which matched up with field measurements. The distribution of leaf inclination angles in the same variety changed throughout the seven growth stages. The leaf inclination angles enlarged gradually from transplanting to booting. During the post-booting period, the leaf inclination angle increased in Shanyou 63 and Liangyou Y06, but changed little in Liangyoupeijiu. At every growth stage of each variety, canopy leaf inclination angle distribution on the six heights of canopy layers was variable. As canopy height increased, the layered leaf area index (LAI) decreased in all the three plant types. However, while the leaf inclination angles showed little change in Liangyoupeijiu, they became larger in Shanyou 63 but smaller in Liangyou Y06. The simulation results used in the constructed model were very similar to the actual measurement values. The model provides a method for estimating canopy leaf inclination angle distribution in rice production.
基金supported by the Equipment Development Department Project of China(No. 41422010401)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘There are amounts of issues to be resolved in the process of designing the fiber placement trajectory of the cylindrical component,such as the interference between the machine and the component and the over-travel of the axis of rotation on the fiber placement head.When the pressure on the cylinder surface inclines in a certain direction or at an angle within the normal plane,the motion characteristics of the rotation axis will be different.This paper analyzes the pressure angle effect of the concave cylinder surface on the motion features of a fiber placement machine.The placement area is enlarged by tilting pressure with the same lifting stroke,which is significant in preventing interference and selecting post-processing algorithm.
基金The paper was supported by National Nature Fund of China(52071091)the Key Laboratory of Expressway Construction Machinery of Shanxi Province which is gained by Zhang(300102259512).
文摘The effects of oblique submerged scouring jets on sand beds with various particle sizes have been studied experimentally.In particular,a total of 25 experiments have been carried out to explore the influences of the jet angle and application time on the considered submerged sand beds.Test results conducted with a specially-designed device have shown that the scouring efficiency attains a maximum when the inclination angle is in the range between 15°and 20°and then it decreases when the inclination angle becomes higher.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52171311,52271279)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.20KJB510046)。
文摘Experiments were conducted to investigate the dynamics of an oscillating bubble generated by a spark in the presence of an inclined attached air bubble.The study primarily focused on the influence of the inclination angle on the behavior of bubble jetting orientation,air bubble shape modes,and motion characteristics of the interaction between the two bubbles.Various complex bubble jetting behaviors were observed,including the presence of multiple types of bubble jetting directions,bubble splitting,and multidirectional jets.Four types of air bubble shapes were defined,namely inclined cup cover-shaped(with and without splitting),double-peaked cup cover-shaped,and inclined L-shaped air bubbles.The formation of different types of bubble jets was analyzed using the vector synthesis principle of the Bjerknes force exerted by the inclined attached air bubble and a steel plate.To describe the diverse orientations of bubble jetting and air bubble shapes,new parameters namely the dimensionless spark bubble oscillation time T^(*)and volume ratio V^(*)that consider the inclination angle are proposed.The findings of this investigation contribute to the existing knowledge and have the potential to further enhance methods for mitigating cavitation damage in marine,hydraulic machinery systems,and medical fields.l fields.
基金Supported by the National Natural Science Foundation of China(No.51408399)
文摘Combining lubrication theory and CFD technology, a finite element model is established to simulate the rain-wind-induced vibration(RWIV). Based on Spalart-Allmaras(S-A)turbulence type, COMSOL software is adopted to calculate the wind pressure coefficient and wind friction coefficient that vary with the location and time. To verify the veracity and rationality of this method, the formation and evolution of rivulets at different wind speeds are studied and compared with the existing experimental results. Furthermore, the time, location, height and width of the initial formation of rivulets are analyzed at different wind speeds, cable inclination angles and wind yaw angles. The results show that the three influencing factors mentioned above have great effect on the formation of rivulet, and the influencing tendency, range and degree are different from each other.
文摘The present study deals with double-diffusive convection within a two-dimensional inclined cavity filled with an air-CO_(2) binary gas mixture.The left and the right vertical walls are differentially heated and subjected to different locations of(CO_(2))contaminants to allow for the variation of the buoyancy strength(N).However,the horizontal walls are assumed adiabatic.The simulations are conducted using the finite volume method to solve the conservation equations of continuity,momentum,energy,and species transport.Good agreement with other numerical results in the literature is obtained.The effect of multiple parameters,namely,buoyancy ratio(N),thermal Rayleigh number(Ra),and inclination angle(α)on entropy generation rate is analyzed and discussed in the postprocessing stage,while considering both laminar and turbulent flow regimes.The computations reveal that these parameters considerably affect both the heat and mass transfer performances of the system.
文摘The effect of the tilt angle on mixed convection and related heat transfer in a“T”shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated.The considered obstacles are constantly kept at a relatively high(fixed)temperature,while the cavity’s upper wall is cooled.The finite volume approach is used to solve the mass,momentum,and energy equations with the SIMPLEC algorithm being exploited to deal with the pressure-velocity coupling.Emphasis is put on the influence of the tilt angle on the solution symmetry,flow structure,and heat exchange through the walls.The following parameters and related ranges are considered:Rayleigh number 104≤Ra≤5.105,tilt angle 0°≤φ≤90°,Reynolds number 100≤Re≤1000,Prandtl number Pr=0.72,block height B=0.5,opening width C=0.15,and distance between blocks D=0.5.The results reveal different branches of solutions on varying Re andφ.They also show that the symmetry of the solution regarding the P_(2)axis is retained for all cases with no tilt and for values of Re between 100 and 1000.
基金Project(50976035)supported by the National Natural Science Foundation of ChinaProject(4521ZK120064004)supported by the Science and Technology Commission Green Energy and Power Engineering of Special Fund Project of Shanghai,China
文摘The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance.
基金Projects(41630642,11472311)supported by the National Natural Science Foundation of ChinaProject(2017zzts181)supported by the Cultivating Excellent Ph Ds of Central South University,ChinaProject(201806370062)supported by the China Scholarship Council
文摘Based on the stress redistribution analysis of rock mass during the deep underground excavation, the unloading process of pre-flawed rock material was simulated by distinct element method (DEM). The effects of unloading rate and flaw inclination angle on unloading strengths and cracking properties of pre-flawed rock specimens are numerically revealed. The results indicate that the unloading failure strength of pre-flawed specimen exhibits a power-function increase trend with the increase of unloading period. Moreover, combined with the stress state analysis on the flaws, it is found that the unloading failure strength increases with the increase of flaw inclination angle. The cracking distribution of pre-flawed specimens under the unloading condition closely depends on the flaw inclination angle, and three typical types of flaw coalescence are observed. Furthermore, at a faster unloading rate, the pre-flawed specimen experiences a sharper and quicker unloading failure process, resulting in more splitting cracks in the specimens.
基金supported by National Natural Science Foundation of China(No.50676026)the Program for Chair Professors of"Cheung Kong Scholars Program"of China in 2008
文摘Experimental investigations into the effects of the magnetic field configuration near the channel exit on the plume of Hall thrusters were conducted. The magnetic field configuration near the channel exit is characterized by the inclination angle between the magnetic field lines and the thruster radial direction. Different inclination angles were obtained by varying the current ratio in the coils. The plume divergence angles were measured by a dual-directed probe. The results showed that the plume divergence angle increased obviously with the increase in the magnitude of the inclination angle near the channel exit. Therefore, in order to optimize the magnetic field for reducing plume divergence, the magnitude of the inclination angle should be reduced as much as possible. It suggests that the magnetic field configuration near the channel exit is another important factor that affects plume divergence.
基金Project(2005CB623703) supported by the National Basic Research Program of China
文摘Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simulate the electric field in a 75 kA drained aluminum reduction cell. The current distribution and influences of the cathode inclination angle and anode-cathode distance (ACD) were studied. The results show that relatively large horizontal current density appears in the aluminum film, and the maximum value reaches 600 kA/m2. As the cathode inclination angle increases from 2° to 15°, the maximum current density of the metal pad increases by 15%, while the maximum current density of the aluminum-wettable coating layer decreases by 27%. The influence of the ACD on the current distribution is not obvious.
文摘To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of various meteorological parameters namely the monthly averaged value of maximum temperature, minimum temperature, humidity and sunshine hours were used in this study. Assessment of the solar resources for the solar based renewable energy technologies of Bangladesh may be based upon this kind of measured data analyzed study. This study tried to estimate the monthly averaged solar radiation by presenting data in table and graph and finally analyze through equations and descriptions. Correlation between the measurements of monthly averaged solar radiation and the meteorological parameters was given for the selected 10 stations in Bangladesh. In conclusion, we tried to make a comparison among solar radiation on horizontal surface, fixed 20.83<sup> ° </sup> (degree) optimal tilt angle and variable optimal tilt surface at Dhaka station.