The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criteri...This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas.展开更多
Natural gas hydrate has huge reserves and is widely distributed in marine environment.Its commercial development is of great significance for alleviating the contradiction between energy supply and demand.As an effici...Natural gas hydrate has huge reserves and is widely distributed in marine environment.Its commercial development is of great significance for alleviating the contradiction between energy supply and demand.As an efficient research method,numerical simulation can provide valuable insights for the design and optimization of hydrate development.However,most of the current production models simplify the reservoir as a two-dimensional(2D)horizontal layered model,often ignoring the impact of formation dip angle.To improve the accuracy of production prediction and provide theoretical support for the optimization of production well design,two three-dimensional(3D)geological models with different dip angles based on the geological data from two typical sites are constructed.The vertical well,horizontal well and multilateral wells are deployed in these reservoirs with different permeabilities to perform production trial,and the sensitivity analysis of dip angles is also carried out.The short-term production behaviors in high and low permeability reservoirs with different dip angles are exhibited.The simulation results show that 1)the gas and water production behaviors for different well types in the two typical reservoirs show obviously different variation laws when the short-term depressurization is conducted in the inclined formation;2)the inclined formation will reduce the gas production and increase the water extraction,and the phenomena becomes pronounced as the dip angle increases,particularly in the low-permeability reservoirs;3)and the impact of formation dip on hydrate recovery does not change significantly with the variation of well type.展开更多
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th...The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.展开更多
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ...A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles.展开更多
Lateral intakes are common in rivers.The pump effciency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width.The hydraulic characteristics of lateral withdrawa...Lateral intakes are common in rivers.The pump effciency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width.The hydraulic characteristics of lateral withdrawal from inclined river slopes at different intake elevations should be investigated.Meanwhile,the division width exhibits significant vertical non-uniformity at an inclined river slope,which should be clarified.Hence,a three-dimensional(3-D)hydrodynamic and particle-tracking model was developed with the Open Source Field Operation and Manipulation(Open FOAM),and the model was validated with physical model tests for 90°lateral withdrawal from an inclined side bank.The flow fields,withdrawal sources,and division widths were investigated with different intake bottom elevations,withdrawal discharges,and main channel velocities.This study showed that under inclined side bank conditions,water entered the intake at an oblique angle,causing significant 3-D spiral flows in the intake rather than two-dimensional closed recirculation.A lower withdrawal discharge,a lower bottom elevation of the intake,or a higher main channel velocity could further strengthen this phenomenon.The average division width and turbulent kinetic energy were smaller under inclined side bank conditions than under vertical bank conditions.With a low intake bottom elevation,a low withdrawal discharge,or a high main channel velocity,the sources of lateral withdrawal were in similar ranges near the local inclined bank in the vertical direction.Under inclined slope conditions,sediment deposition near the intake entrance could be reduced,compared to that under vertical slope conditions.The results provide hydrodynamic and sediment references for engineering designs for natural rivers with inclined terrains.展开更多
In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gra...In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gradient.Typically,problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming constant different temperatures at the boundaries of the layer,which prevent these systems from supporting conductive(non-convective)states.The boundary conditions considered in the present work allow a conductive state and are representative of typical geological applications.In an earlier work,we carried out a linear stability analysis of the conductive state.It was shown that at any layer tilt angles,the most dangerous type of disturbances are longitudinal rolls.Moreover,a non-zero velocity component exists in z-direction.In the present work,threedimensional non-linear convection regimes are studied.The original three-dimensional problem is reduced to two-dimensional one with an analytical expression for the velocity z-component v_(z)=v_(z)(x,y).It is shown that the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite difference method for different layer inclination angles,are in a good agreement with those predicted by the linear theory.The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for a given cavity geometry.Calculations carried out at low supercriticalities show that a direct bifurcation takes place.With increasing supercriticality,no transitions to other convective regimes are detected.The situation studied in this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature gradient,where the ensuing fluid convection can affect the distribution of oil throughout the layer.展开更多
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t...In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.展开更多
Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This...Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.展开更多
The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes o...The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading.展开更多
Gas-liquid two-phase flow is ubiquitous in the process of oil and gas exploitation,gathering and transportation.Flow pattern,liquid holdup and pressure drop are important parameters in the process of gas-liquid two-ph...Gas-liquid two-phase flow is ubiquitous in the process of oil and gas exploitation,gathering and transportation.Flow pattern,liquid holdup and pressure drop are important parameters in the process of gas-liquid two-phase flow,which are closely related to the smooth passage of the two-phase fluid in the pipe section.Although Mukherjee,Barnea and others have studied the conventional viscous gas-liquid two-phase flow for a long time at home and abroad,the overall experimental scope is not comprehensive enough and the early experimental conditions are limited.Therefore,there is still a lack of systematic experimental research and wellbore pressure for gas-liquid two-phase flow under the conditions of middle and high yield and high gas-liquid ratio in conventional viscosity,and the prediction accuracy is low.In view of this,this study carried out targeted systematic research,and from the flow pattern,liquid holdup and pressure drop aspects,established the relevant model,obtained a set of inclined wellbore gas-liquid two-phase pipe flow dynamic prediction method.At the same time,firstly,the model is tested by experimental data,and then the model is compared and verified by a number of field measured wells,which proves that the model is reliable and the prediction accuracy of wellbore pressure is high.展开更多
In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low seria...In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low serial computing efficiency of a traditional CPU and achieve significant acceleration.This model was used to explore the evolution of dendrite growth under natural convection.Through the study of the tip velocities,it is found that the growth of the dendrite arms at the bottom is inhibited while the growth of the dendrite arms at the top is promoted by natural convection.In addition,research on the inclined dendrite under natural convection was conducted.It is observed that there is a deviation between the actual growth direction and the preferred angle of the inclined dendrite.With the increase of the preferred angle of the seed,the difference between the actual growth direction and the initial preferred angle of the inclined dendrite shows a trend of increasing at first and then decreasing.In the simulation area,the relative deflection directions of the primary dendrite arms in the top right corner and the bottom left corner of the same dendrite are almost counterclockwise,while the relative deflection directions of the other two primary dendrite arms are clockwise.展开更多
Water jets are widely used in seabed scouring and desilting applications.In the present work,dedicated tests have been conducted using a jet scour model test platform and sand beds containing grains with different siz...Water jets are widely used in seabed scouring and desilting applications.In the present work,dedicated tests have been conducted using a jet scour model test platform and sand beds containing grains with different sizes.The FLOW-3D simulation software has also been used to tackle the problem form a numerical point of view.The boundary conditions of the simulation have been optimized to reduce the gap between the numerical results and the outcomes of the experimental tests.Scour area calculation has been based on a RNG k-εTurbulence model.Moreover,the FAVOR(Fractional Area Volume Obstacle Representation)technology has been selected for grid division to make the simulation results more accurate.Jet scours with inclination angles of 10–20°have been simulated.It has been found that jet scouring is greatly affected by the environmental water flow,that is,water flow can weaken the scouring capacity of the jets.展开更多
Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wa...Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells.展开更多
Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations.Therefore,designing vessels with optimal energy efficiency and f...Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations.Therefore,designing vessels with optimal energy efficiency and flow dynamics is essential to enhance operational performance and eliminate flow perturbations.Hence,the present research focuses on a numerical investigation of the impact of inclined slots with different angles installed at the side-wall of a cylindrical vessel equipped with a Rushton turbine.This study explores power consumption and vortex size while considering various rotation directions of the impeller with different rotation speeds.The numerical simulations are conducted for Reynolds numbers ranging from 104 to 105,using the RANS k-εturbulence model to govern the flow inside the stirred vessel,accounting for mass and momentum balances.The results have shown that the installation of slots reduces power consumption and vortex size compared to conventional vessel configu-rations.Moreover,increasing the slot angle from 0 to 32.5°further reduces energy consumption and vortex size,especially with negative rotation speeds.On the other hand,increasing the Reynolds numbers leads to a decrease in power consumption and an increase in vortex size.The present research therefore proposes a design for con-structing Rushton-turbine stirred vessels offering optimal operation,characterized by reduced energy consumption and minimized vortex size.展开更多
Hydraulic transport in pipelines is the most promising conveying method for large ore particles in deepsea mining.The dynamic performances of particles during transportation in vertical,inclined and horizontal pipelin...Hydraulic transport in pipelines is the most promising conveying method for large ore particles in deepsea mining.The dynamic performances of particles during transportation in vertical,inclined and horizontal pipelines are significant for the design of hydraulic transport systems.In the present study,we focus on the statistical characteristics and flow regimes of the mixture composed of ore particles and seawater in the pipelines.Numerical simulations are conducted by using Computational Fluid Dynamics(CFD)and Discrete Element Method(DEM).The influences of inclination angle and particle diameter are evaluated through two sets of numerical tests.The regulation of the inclined transport is totally different from that of the vertical transport,whereas the dynamics of the mixtures in inclined and horizontal pipes are similar.A number of particles accumulate on the pipe wall even with a small inclination angle.Large hydraulic gradient and local concentration would occur when the inclination angle of the pipe is in the range of30°-60°.With the decrease of particle diameter,the particle flow becomes uniform,reflected by the almost uniform particle distribution in the vertical pipe and the clear interface between the suspended load and the bed-load in the inclined pipe.However,small particles will introduce larger local concentrations and hydraulic gradients in the inclined pipe,which is not conducive to particle transport.展开更多
We propose to investigate the THz field generation using nonlinear mixing mechanism of laser beat wave with inclined rippled density plasmas.Two laser pulses with frequencies(ω_(1),ω_(2)) and wave vectors(k_(1),k_(2...We propose to investigate the THz field generation using nonlinear mixing mechanism of laser beat wave with inclined rippled density plasmas.Two laser pulses with frequencies(ω_(1),ω_(2)) and wave vectors(k_(1),k_(2)) co-propagate and resultant laser beat wave forms at beat frequency(ω_(1)-ω_(2)).Laser beat wave imparts a nonlinear force on the ambient electrons and pushes them outward with nonlinear velocity v_(NL).Coupling of induced density perturbation and nonlinear velocity v_(NL)generates nonlinear currents at laser beat frequency that further generates electromagnetic field E_((ω_(1)-ω_(2))) in terahertz(THz)range.In the present scheme,density ripples are introduced at an angle with respect to laser propagation and flat Gaussian index(f) is introduced in laser field profile that transform curved top of Gaussian field envelope into flat top field envelope.The combined effect of flat laser pulses with inclined density ripples in plasmas shows 10-fold enhancement in THz field amplitude when flat-Gaussian index(f) varies from 1 to 4.Also,the THz field intensifies when density ripples inclination increases upto a certain angle and then decreases.展开更多
Long-term field monitoring finds that serious surface subsidence can still occur even if the high strength cemented fill method is adopted.Combining the results of numerical simulations with global position system(GPS...Long-term field monitoring finds that serious surface subsidence can still occur even if the high strength cemented fill method is adopted.Combining the results of numerical simulations with global position system(GPS)monitoring,we took a typical filling mining mine with a steeply inclined ore body as an example,and explored its ground subsidence mechanism.The results show that the ground subsidence caused by the mining of steep ore body is characterized by two settlement centers and a significantly uneven spatial distribution,which is visibly different from ground subsidence characteristic of the coal mine.The subsidence on the hanging wall is much larger than that on the footwall,and the settlement center tends to move to the hanging wall with the increase of mining depth.The backfill improves the strength and surrounding rock bearing capacity,which leads to a lag of about 3 years of the subsidence.However,under the actions of continuous and repeated mining disturbances,the supporting effect of the backfill can only reduce the amplitude of the deformation,but it cannot prevent the occurrence of settlement.展开更多
The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inho...The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inhomogeneous materials,complex morphology,and erratic joints.Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety(FoS)and Critical Slip Surface(CSS).In this article,the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor(SRF)method.An inclined Tension Crack(TC)influences the magnitude and location of the rock slope’s Critical Shear Strength Reduction Factor(CSRF).Certainly,inclined cracks are more prone to cause the failure of the slope than the vertical TC.Yet,all tension cracks do not lead to failure of the slope mass.The effect of the crest distance of the tension crack is also investigated.The numerical results do not show any significant change in the magnitude of CSRF unless the tip of the TC is very near to the crest of the slope.ATC is also replaced with a joint,and the results differ from the corresponding TC.These results are discussed regarding shear stress and Critical Slip Surface(CSS).展开更多
Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum depo...Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum deposited layers were known to consist of two consecutive layers. In this article, Cu-phthalocyanine was deposited on the glass substrate inclined at several angles. The thickness of the first layer was found to be dependent on the substrate angle.展开更多
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
基金supported by Centre for Development of Advanced Computing (CDAC), Pune。
文摘This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas.
基金supported by the National Natural Science Foundation of China(Nos.42372361 and 51904280)the Key Research and Development Program of China(No.2018YFE0126400).
文摘Natural gas hydrate has huge reserves and is widely distributed in marine environment.Its commercial development is of great significance for alleviating the contradiction between energy supply and demand.As an efficient research method,numerical simulation can provide valuable insights for the design and optimization of hydrate development.However,most of the current production models simplify the reservoir as a two-dimensional(2D)horizontal layered model,often ignoring the impact of formation dip angle.To improve the accuracy of production prediction and provide theoretical support for the optimization of production well design,two three-dimensional(3D)geological models with different dip angles based on the geological data from two typical sites are constructed.The vertical well,horizontal well and multilateral wells are deployed in these reservoirs with different permeabilities to perform production trial,and the sensitivity analysis of dip angles is also carried out.The short-term production behaviors in high and low permeability reservoirs with different dip angles are exhibited.The simulation results show that 1)the gas and water production behaviors for different well types in the two typical reservoirs show obviously different variation laws when the short-term depressurization is conducted in the inclined formation;2)the inclined formation will reduce the gas production and increase the water extraction,and the phenomena becomes pronounced as the dip angle increases,particularly in the low-permeability reservoirs;3)and the impact of formation dip on hydrate recovery does not change significantly with the variation of well type.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51809209 and 11702244)the Open Fund of Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2021SS04).
文摘The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.
基金Sichuan Science and Technology Program under Grant No.2023NSFSC0894Major Project of the Science and Technology Research and Development Program of the Ministry of Railways of China under Grant No.Z2012-061。
文摘A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles.
基金supported by the National Natural Science Foundation of China(Grant No.52379061)the Natural Science Foundation of Jiangsu Province(Grant No.BK20230099)the Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(Grant No.QTKS0034W23292).
文摘Lateral intakes are common in rivers.The pump effciency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width.The hydraulic characteristics of lateral withdrawal from inclined river slopes at different intake elevations should be investigated.Meanwhile,the division width exhibits significant vertical non-uniformity at an inclined river slope,which should be clarified.Hence,a three-dimensional(3-D)hydrodynamic and particle-tracking model was developed with the Open Source Field Operation and Manipulation(Open FOAM),and the model was validated with physical model tests for 90°lateral withdrawal from an inclined side bank.The flow fields,withdrawal sources,and division widths were investigated with different intake bottom elevations,withdrawal discharges,and main channel velocities.This study showed that under inclined side bank conditions,water entered the intake at an oblique angle,causing significant 3-D spiral flows in the intake rather than two-dimensional closed recirculation.A lower withdrawal discharge,a lower bottom elevation of the intake,or a higher main channel velocity could further strengthen this phenomenon.The average division width and turbulent kinetic energy were smaller under inclined side bank conditions than under vertical bank conditions.With a low intake bottom elevation,a low withdrawal discharge,or a high main channel velocity,the sources of lateral withdrawal were in similar ranges near the local inclined bank in the vertical direction.Under inclined slope conditions,sediment deposition near the intake entrance could be reduced,compared to that under vertical slope conditions.The results provide hydrodynamic and sediment references for engineering designs for natural rivers with inclined terrains.
基金financial support from the Ministry of Science and Higher Education of the Russian Federation(Topic No.121031700169-1).
文摘In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gradient.Typically,problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming constant different temperatures at the boundaries of the layer,which prevent these systems from supporting conductive(non-convective)states.The boundary conditions considered in the present work allow a conductive state and are representative of typical geological applications.In an earlier work,we carried out a linear stability analysis of the conductive state.It was shown that at any layer tilt angles,the most dangerous type of disturbances are longitudinal rolls.Moreover,a non-zero velocity component exists in z-direction.In the present work,threedimensional non-linear convection regimes are studied.The original three-dimensional problem is reduced to two-dimensional one with an analytical expression for the velocity z-component v_(z)=v_(z)(x,y).It is shown that the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite difference method for different layer inclination angles,are in a good agreement with those predicted by the linear theory.The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for a given cavity geometry.Calculations carried out at low supercriticalities show that a direct bifurcation takes place.With increasing supercriticality,no transitions to other convective regimes are detected.The situation studied in this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature gradient,where the ensuing fluid convection can affect the distribution of oil throughout the layer.
基金financially supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Outstanding Ph.D Dissertation Cultivating Program of Xi’an University of Science and Technology(No.PY22001)the National Foundation for studying abroad(No.[2022]87)。
文摘In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.
基金jointly supported by the projects of the China Geological Survey(DD20230092,DD20201119)。
文摘Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.
基金The authors like to express appreciation to the support given by the major national science and technology special project:Research and Application of Key Technologies for Oil Production and Gas Recovery in Complex Carbonate Reservoirs in Central Asia and Middle East(2017ZX05030-005)Scientific Research Startup Fund Project for Introducing Talent of Kunming University of Science and Technology(KKSY20180502).
文摘The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading.
基金The authors like to express appreciation to the support given by the major national science and technology special project:National Natural Science Foundation of China“Complex System Identification and Optimum Design Based on Hybrid Data and Its Application in Low Permeability Oil Wells”(No.61572084)National Major Project“Lifting Technology and Matching Technology for Production Wells in Whole Life Cycle”(2016ZX056004-002)National Major Science and Technology Project(2017ZX05030-005).
文摘Gas-liquid two-phase flow is ubiquitous in the process of oil and gas exploitation,gathering and transportation.Flow pattern,liquid holdup and pressure drop are important parameters in the process of gas-liquid two-phase flow,which are closely related to the smooth passage of the two-phase fluid in the pipe section.Although Mukherjee,Barnea and others have studied the conventional viscous gas-liquid two-phase flow for a long time at home and abroad,the overall experimental scope is not comprehensive enough and the early experimental conditions are limited.Therefore,there is still a lack of systematic experimental research and wellbore pressure for gas-liquid two-phase flow under the conditions of middle and high yield and high gas-liquid ratio in conventional viscosity,and the prediction accuracy is low.In view of this,this study carried out targeted systematic research,and from the flow pattern,liquid holdup and pressure drop aspects,established the relevant model,obtained a set of inclined wellbore gas-liquid two-phase pipe flow dynamic prediction method.At the same time,firstly,the model is tested by experimental data,and then the model is compared and verified by a number of field measured wells,which proves that the model is reliable and the prediction accuracy of wellbore pressure is high.
基金supported by the National Natural Science Foundation of China(Grant Nos.52161002,51661020 and 11364024)the Postdoctoral Science Foundation of China(Grant No.2014M560371)the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China(Grant No.J201304).
文摘In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low serial computing efficiency of a traditional CPU and achieve significant acceleration.This model was used to explore the evolution of dendrite growth under natural convection.Through the study of the tip velocities,it is found that the growth of the dendrite arms at the bottom is inhibited while the growth of the dendrite arms at the top is promoted by natural convection.In addition,research on the inclined dendrite under natural convection was conducted.It is observed that there is a deviation between the actual growth direction and the preferred angle of the inclined dendrite.With the increase of the preferred angle of the seed,the difference between the actual growth direction and the initial preferred angle of the inclined dendrite shows a trend of increasing at first and then decreasing.In the simulation area,the relative deflection directions of the primary dendrite arms in the top right corner and the bottom left corner of the same dendrite are almost counterclockwise,while the relative deflection directions of the other two primary dendrite arms are clockwise.
基金This work is supported by National Nature Fund of China(52071091)the Key Laboratory of Expressway Construction Machinery of Shanxi Province which is gained by Zhang(300102259512).
文摘Water jets are widely used in seabed scouring and desilting applications.In the present work,dedicated tests have been conducted using a jet scour model test platform and sand beds containing grains with different sizes.The FLOW-3D simulation software has also been used to tackle the problem form a numerical point of view.The boundary conditions of the simulation have been optimized to reduce the gap between the numerical results and the outcomes of the experimental tests.Scour area calculation has been based on a RNG k-εTurbulence model.Moreover,the FAVOR(Fractional Area Volume Obstacle Representation)technology has been selected for grid division to make the simulation results more accurate.Jet scours with inclination angles of 10–20°have been simulated.It has been found that jet scouring is greatly affected by the environmental water flow,that is,water flow can weaken the scouring capacity of the jets.
基金Supported by National Natural Science Foundation of China(21978171)。
文摘Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells.
文摘Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations.Therefore,designing vessels with optimal energy efficiency and flow dynamics is essential to enhance operational performance and eliminate flow perturbations.Hence,the present research focuses on a numerical investigation of the impact of inclined slots with different angles installed at the side-wall of a cylindrical vessel equipped with a Rushton turbine.This study explores power consumption and vortex size while considering various rotation directions of the impeller with different rotation speeds.The numerical simulations are conducted for Reynolds numbers ranging from 104 to 105,using the RANS k-εturbulence model to govern the flow inside the stirred vessel,accounting for mass and momentum balances.The results have shown that the installation of slots reduces power consumption and vortex size compared to conventional vessel configu-rations.Moreover,increasing the slot angle from 0 to 32.5°further reduces energy consumption and vortex size,especially with negative rotation speeds.On the other hand,increasing the Reynolds numbers leads to a decrease in power consumption and an increase in vortex size.The present research therefore proposes a design for con-structing Rushton-turbine stirred vessels offering optimal operation,characterized by reduced energy consumption and minimized vortex size.
基金financially supported by the National Natural Science Foundation of China (Grant No.51909164)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (Grant No.520LH052)。
文摘Hydraulic transport in pipelines is the most promising conveying method for large ore particles in deepsea mining.The dynamic performances of particles during transportation in vertical,inclined and horizontal pipelines are significant for the design of hydraulic transport systems.In the present study,we focus on the statistical characteristics and flow regimes of the mixture composed of ore particles and seawater in the pipelines.Numerical simulations are conducted by using Computational Fluid Dynamics(CFD)and Discrete Element Method(DEM).The influences of inclination angle and particle diameter are evaluated through two sets of numerical tests.The regulation of the inclined transport is totally different from that of the vertical transport,whereas the dynamics of the mixtures in inclined and horizontal pipes are similar.A number of particles accumulate on the pipe wall even with a small inclination angle.Large hydraulic gradient and local concentration would occur when the inclination angle of the pipe is in the range of30°-60°.With the decrease of particle diameter,the particle flow becomes uniform,reflected by the almost uniform particle distribution in the vertical pipe and the clear interface between the suspended load and the bed-load in the inclined pipe.However,small particles will introduce larger local concentrations and hydraulic gradients in the inclined pipe,which is not conducive to particle transport.
文摘We propose to investigate the THz field generation using nonlinear mixing mechanism of laser beat wave with inclined rippled density plasmas.Two laser pulses with frequencies(ω_(1),ω_(2)) and wave vectors(k_(1),k_(2)) co-propagate and resultant laser beat wave forms at beat frequency(ω_(1)-ω_(2)).Laser beat wave imparts a nonlinear force on the ambient electrons and pushes them outward with nonlinear velocity v_(NL).Coupling of induced density perturbation and nonlinear velocity v_(NL)generates nonlinear currents at laser beat frequency that further generates electromagnetic field E_((ω_(1)-ω_(2))) in terahertz(THz)range.In the present scheme,density ripples are introduced at an angle with respect to laser propagation and flat Gaussian index(f) is introduced in laser field profile that transform curved top of Gaussian field envelope into flat top field envelope.The combined effect of flat laser pulses with inclined density ripples in plasmas shows 10-fold enhancement in THz field amplitude when flat-Gaussian index(f) varies from 1 to 4.Also,the THz field intensifies when density ripples inclination increases upto a certain angle and then decreases.
基金support from the National Natural Science Foundation of China(Grant Nos.42072305 and 41831293)。
文摘Long-term field monitoring finds that serious surface subsidence can still occur even if the high strength cemented fill method is adopted.Combining the results of numerical simulations with global position system(GPS)monitoring,we took a typical filling mining mine with a steeply inclined ore body as an example,and explored its ground subsidence mechanism.The results show that the ground subsidence caused by the mining of steep ore body is characterized by two settlement centers and a significantly uneven spatial distribution,which is visibly different from ground subsidence characteristic of the coal mine.The subsidence on the hanging wall is much larger than that on the footwall,and the settlement center tends to move to the hanging wall with the increase of mining depth.The backfill improves the strength and surrounding rock bearing capacity,which leads to a lag of about 3 years of the subsidence.However,under the actions of continuous and repeated mining disturbances,the supporting effect of the backfill can only reduce the amplitude of the deformation,but it cannot prevent the occurrence of settlement.
文摘The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inhomogeneous materials,complex morphology,and erratic joints.Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety(FoS)and Critical Slip Surface(CSS).In this article,the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor(SRF)method.An inclined Tension Crack(TC)influences the magnitude and location of the rock slope’s Critical Shear Strength Reduction Factor(CSRF).Certainly,inclined cracks are more prone to cause the failure of the slope than the vertical TC.Yet,all tension cracks do not lead to failure of the slope mass.The effect of the crest distance of the tension crack is also investigated.The numerical results do not show any significant change in the magnitude of CSRF unless the tip of the TC is very near to the crest of the slope.ATC is also replaced with a joint,and the results differ from the corresponding TC.These results are discussed regarding shear stress and Critical Slip Surface(CSS).
文摘Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum deposited layers were known to consist of two consecutive layers. In this article, Cu-phthalocyanine was deposited on the glass substrate inclined at several angles. The thickness of the first layer was found to be dependent on the substrate angle.