期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Computational fluid dynamic simulations on liquid film behaviors at flooding in an inclined pipe
1
作者 陈建业 唐媛 +3 位作者 张伟 王宇辰 邱利民 张小斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1460-1468,共9页
The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding... The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than0.15 m·s-1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s-1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventually evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow. 展开更多
关键词 Two phase flow Flooding Countercurrent flow limitation Computational fluid dynamic Liquid film inclined pipe
下载PDF
Preparation of Semisolid A356 Alloy Feedstock Cast via a Pipe Consisting of Partial Inclined and Partial Vertical Sections 被引量:1
2
作者 Xiaorong Yang Weimin Mao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期273-276,共4页
In the present work, the microstructures of A356 feedstock cast via a pipe consisting of partial inclined and partial vertical sections were investigated. The experimental results indicate that semisolid feedstock wit... In the present work, the microstructures of A356 feedstock cast via a pipe consisting of partial inclined and partial vertical sections were investigated. The experimental results indicate that semisolid feedstock with ideal microstructures can be obtained at higher temperatures 645℃ and above by the proposed process, and the solid shell inside the pipe can be avoided at the optimum pouring temperature. Thus the process is attractive for industrial applications. The slanted angle of inclined section has an influence on the optimum pouring temperature. That is, the bigger the slanted angle, the higher the optimum pouring temperature, but accordingly, the greater the possibility of solid shell occurring inside the pipe. Therefore, small slanted angle should be considered first on the premise of ensuring a certain nucleation. The formation of semisolid feedstock is owed to the coactions of wall nucleation and stirring resulting from fluid flow. The inclined section greatly affects nucleation, and the vertical section has an important effect on both nucleation and generating stirring. 展开更多
关键词 SEMISOLID Microstructure inclined pipe Vertical pipe Primary α-Al
下载PDF
Flow Pattern and Heat Transfer Behavior of Boiling Two-Phase Flow in Inclined Pipes
3
作者 Liu Dezhang Ouyang Ning Nanjing Aeronautical Institute, 210016 Nanjing, China 《Journal of Thermal Science》 SCIE EI CAS CSCD 1992年第3期196-202,共7页
Movable Electrical Conducting Probe (MECP), a kind of simple and reliable measuring transducer, used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper. Whe... Movable Electrical Conducting Probe (MECP), a kind of simple and reliable measuring transducer, used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper. When the test pipe is set at different inclination angles, several kinds of flow patterns, such as bubble, slug, churn, intermittent, and annular flows, may be observed in accordance with the locations of MECP. By means of flow pattern analysis, flow field numerical calculations have been carried out, and heat transfer coefficient correlations along full-flow-path derived. The results show that heat transfer performance of boiling two-phase flow could be significantly augmented as expected in some flow pattern zones. The results of the investigation, measuring techniques and conclusions contained in this paper would be a useful reference in foundational research for prediction of flow pattern and heat transfer behavior in boiling two-phase flow, as well as for turbine vane liquid-cooling design. 展开更多
关键词 liquid/vapor two phase flow inclined pipes flow patterns heat transfer coefficient.
原文传递
Numerical Investigation on Inclined Hydraulic Transport of Large Particles for Deepsea Mining
4
作者 LIU Lei LI Xin +3 位作者 TIAN Xin-liang ZHANG Xian-tao XU Li-xin ZHANG Xiu-zhan 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期420-432,共13页
Hydraulic transport in pipelines is the most promising conveying method for large ore particles in deepsea mining.The dynamic performances of particles during transportation in vertical,inclined and horizontal pipelin... Hydraulic transport in pipelines is the most promising conveying method for large ore particles in deepsea mining.The dynamic performances of particles during transportation in vertical,inclined and horizontal pipelines are significant for the design of hydraulic transport systems.In the present study,we focus on the statistical characteristics and flow regimes of the mixture composed of ore particles and seawater in the pipelines.Numerical simulations are conducted by using Computational Fluid Dynamics(CFD)and Discrete Element Method(DEM).The influences of inclination angle and particle diameter are evaluated through two sets of numerical tests.The regulation of the inclined transport is totally different from that of the vertical transport,whereas the dynamics of the mixtures in inclined and horizontal pipes are similar.A number of particles accumulate on the pipe wall even with a small inclination angle.Large hydraulic gradient and local concentration would occur when the inclination angle of the pipe is in the range of30°-60°.With the decrease of particle diameter,the particle flow becomes uniform,reflected by the almost uniform particle distribution in the vertical pipe and the clear interface between the suspended load and the bed-load in the inclined pipe.However,small particles will introduce larger local concentrations and hydraulic gradients in the inclined pipe,which is not conducive to particle transport. 展开更多
关键词 deepsea mining hydraulic transport inclined pipe numerical simulation
下载PDF
Effect of the Inclination Angle on Slippage Loss in Gas-Liquid Two-Phase Flow 被引量:4
5
作者 Yushan Liu Yubin Su +2 位作者 Zhenhua Wu Wei Luo Ruiquan Liao 《Fluid Dynamics & Materials Processing》 EI 2020年第3期475-488,共14页
The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horiz... The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horizontal wells.Only a few of them have considered inclined pipes.In the present work a new focused study is presented along these lines.More specifically,we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula(together with the parameters of slippage density,slippage pressure drop and slippage ratio)to analyze the influence of the inclination angle on slippage loss for different conditions(different gas-liquid superficial velocity and pipe diameters).Moreover,the“standard regression coefficient method”is used for multi-factor sensitivity analysis.The experimental results indicate that slippage loss is affected by multiple factors,and the influence of the inclination angle on slippage loss is less significant than other factors.The change of the slippage pressure drop with the superficial velocity of gas-liquid is similar to that of the total pressure drop.The inclination angles of 45°and 60°have the greatest influence on slippage loss.The correlation between slippage density and slippage ratio is not obvious.Using the so-called slippage ratio seems to be a more accurate option to evaluate the degree of slippage loss. 展开更多
关键词 inclined pipes gas-liquid flow slippage loss pressure drop gas-liquid ratio
下载PDF
Experimental study on effect of inclination angles to ammonia pulsating heat pipe 被引量:6
6
作者 Xue Zhihu Qu Wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1122-1127,共6页
In this paper, a novel study on performance of closed loop pulsating heat pipe(CLPHP)using ammonia as working fluid is experimented. The tested CLPHP, consisting of six turns, is fully made of quartz glass tubes wit... In this paper, a novel study on performance of closed loop pulsating heat pipe(CLPHP)using ammonia as working fluid is experimented. The tested CLPHP, consisting of six turns, is fully made of quartz glass tubes with 6 mm outer diameter and 2 mm inner diameter. The filling ratio is50%. The visualization investigation is conducted to observe the oscillation and circulation flow in the CLPHP. In order to investigate the effects of inclination angles to thermal performance in the ammonia CLPHP, four case tests are studied. The trends of temperature fluctuation and thermal resistance as the input power increases at different inclination angles are highlighted. The results show that it is very easy to start up and circulate for the ammonia CLPHP at an inclining angle.The thermal resistance is low to 0.02 K/W, presenting that heat fluxes can be transferred from heating section to cooling section very quickly. It is found that the thermal resistance decreases as the inclination angle increases. At the horizontal operation, the ammonia CLPHP can be easy to start up at low input power, but hard to circulate. In this case, once the input power is high,the capillary tube in heating section will be burnt out, leading to worse thermal performance with high thermal resistance. 展开更多
关键词 Ammonia Inclination angles Pulsating heat pipe Thermal performance Thermal resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部