期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Geology and mineralization of the Daheishan supergiant porphyry molybdenum deposit(1.65 Bt),Jilin,China:A review 被引量:1
1
作者 Nan Ju Di Zhang +11 位作者 Guo-bin Zhang Sen Zhang Chuan-tao Ren Yun-sheng Ren Hui Wang Yue Wu Xin Liu Lu Shi Rong-rong Guo Qun Yang Zhen-ming Sun Yu-jie Hao 《China Geology》 CAS CSCD 2023年第3期494-530,共37页
The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with tot... The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with total molybdenum reserves of 1.65 billion tons,an average molybdenum ore grade of 0.081%,and molybdenum resources of 1.09 million tons.The main ore body is housed in the granodiorite porphyry plutons and their surrounding inequigranular granodiorite plutons,with high-grade ores largely located in the ore-bearing granodiorite porphyries in the middle-upper part of the porphyry plutons.Specifically,it appears as an ore pipe with a large upper part and a small lower part,measuring about 1700 m in length and width,extending for about 500 m vertically,and covering an area of 2.3 km^(2).Mineralogically,the main ore body consists of molybdenite,chalcopyrite,and sphalerite horizontally from its center outward and exhibits molybdenite,azurite,and pyrite vertically from top to bottom.The primary ore minerals include pyrite and molybdenite,and the secondary ore minerals include sphalerite,chalcopyrite,tetrahedrite,and scheelite,with average grades of molybdenum,copper,sulfur,gallium,and rhenium being 0.081%,0.033%,1.67%,0.001%,and 0.0012%,respectively.The ore-forming fluids of the Daheishan deposit originated as the CO_(2)-H_(2)O-NaCl multiphase magmatic fluid system,rich in CO_(2)and bearing minor amounts of CH4,N2,and H2S,and later mixed with meteoric precipitation.In various mineralization stages,the ore-forming fluids had homogenization temperatures of>420℃‒400℃,360℃‒350℃,340℃‒230℃,220℃‒210℃,and 180℃‒160℃and salinities of>41.05%‒9.8%NaCleqv,38.16%‒4.48%NaCleqv,35.78%‒4.49%NaCleqv,7.43%NaCleqv,and 7.8%‒9.5%NaCleqv,respectively.The mineralization of the Daheishan deposit occurred at 186‒167 Ma.The granites closely related to the mineralization include granodiorites(granodiorite porphyries)and monzogranites(monzogranite porphyries),which were mineralized after magmatic evolution(189‒167 Ma).Moreover,these mineralization-related granites exhibit low initial strontium content and high initial neodymium content,indicating that these granites underwent crust-mantle mixing.The Daheishan deposit formed during the Early-Middle Jurassic,during which basaltic magma underplating induced the lower-crust melting,leading to the formation of magma chambers.After the fractional crystallization of magmas,ore-bearing fluids formed.As the temperature and pressure decreased,the ore-bearing fluids boiled drops while ascending,leading to massive unloading of metal elements.Consequently,brecciated and veinlet-disseminated ore bodies formed. 展开更多
关键词 Molybdenum deposit Porphyry type Granodiorite porphyry Crust-mantle mixing METALLIZATION U-Pb age O-S-Pb isotope Re isotope Inclusion type Ore-bearing fluid Metallogenic model Prospecting model Mineral exploration engineering
下载PDF
Fatigue cracking criterion of high-strength steels induced by inclusions under high-cycle fatigue 被引量:1
2
作者 Peng Wang Peng Zhang +3 位作者 Bin Wang Yankun Zhu Zikuan Xu Zhefeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期114-128,共15页
Fatigue properties of high-strength steels become more and more sensitive to inclusions with enhancing the ultimate tensile strength (UTS) because the inclusions often cause a relatively low fatigue strength and a lar... Fatigue properties of high-strength steels become more and more sensitive to inclusions with enhancing the ultimate tensile strength (UTS) because the inclusions often cause a relatively low fatigue strength and a large scatter of fatigue lives. In this work, four S–N curves and more than 200 fatigue fracture morphologies were comprehensively investigated with a special focus on the size and type of inclusions at the fatigue cracking origin in GCr15 steel with a wide strength range by different heat treatments after high-cycle fatigue (HCF). It is found that the percentage of fatigue failure induced by the inclusion including Al2 O3 and TiN gradually increases with increasing the UTS, while the percentage of failure at sample surfaces decreases conversely and the fatigue strength first increases and then decreases. Besides, it is interestingly noted that the inclusion sizes at the cracking origin for TiN are smaller than that for Al2 O3 because the stress concentration factor for TiN is larger than that for Al2 O3 based on the finite element simulation. For the first time, a new fatigue cracking criterion including the isometric inclusion size line in the strength-toughness coordinate system with specific physical meaning was established to reveal the relationship among the UTS, fracture toughness, and the critical inclusion size considering different types of inclusions based on the fracture mechanics. And the critical inclusion size of Al2 O3 is about 1.33 times of TiN. The fatigue cracking criterion could be used to judge whether fatigue fracture occurred at inclusions or not and provides a theoretical basis for controlling the scale of different inclusion types for high-strength steels. Our work may offer a new perspective on the critical inclusion size in terms of the inclusion types, which is of scientific interest and has great merit to industrial metallurgical control for anti-fatigue design. 展开更多
关键词 High-strength steel High-cycle fatigue Critical inclusion size Inclusion types Tensile strength Fracture toughness Fatigue cracking criterion
原文传递
Quartz-Hosted Fluid Inclusions Characteristics and Their Implications for Fluvial Deposits along the Changjiang River
3
作者 Zhenqiang Ji Chendong Ge +1 位作者 Mengyang Zhou Nan Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2020年第3期571-581,共11页
The characteristics of quartz-hosted fluid inclusions in fluvial sediments from five locations in the upstream,midstream,and estuary of the Changjiang River,China,are analyzed.The sources of sediments are discussed co... The characteristics of quartz-hosted fluid inclusions in fluvial sediments from five locations in the upstream,midstream,and estuary of the Changjiang River,China,are analyzed.The sources of sediments are discussed concerning their differences in the shape,size,number,gas percentage and genetic type of quartz-hosted fluid inclusions.From upstream to downstream,the characteristics of quartz-hosted fluid inclusions in sediments are different.The fluid inclusion types in the samples from upstream to estuary are gradually enriched.The sediment influx from the tributaries of the Changjiang River makes new types of quartz-hosted fluid inclusions in the downstream and estuary.In terms of the number and size,most quartz-hosted fluid inclusions are concentrated in the range of 2-4μm in diameters and 10-150 in number per 10^-3 mm^3.The number and size ranges of the fluid inclusions from different positions are also different.The fluid inclusions in the sample collected from the Shigu,upstream of the Changjiang River,are 2-18μm in size,with the number of 2-166 per 10^-3 mm^3.Among the samples collected from Yibin,Yichang and Wuhan,the sizes of fluid inclusions are 2-15,2-10,2-12μm,with the number of 1-270,2-220,and 1^-308 per 10^-3 mm^3,respectively.The proportion of primary fluid inclusions in the sample of the upstream(14%)is higher than that of the midstream(6%-8%)and the estuary(5%),suggesting that different types of source rocks have been input into the river by the tributaries.The characteristics of quartz-hosted fluid inclusions in the fluvial sediments could offer a new perspective for exploration of the source of sediments. 展开更多
关键词 quartz-hosted fluid inclusions morphological characteristics fluid inclusion types source of fluvial sediments Changjiang River
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部