This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the l...This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the learning process and adapt their policies sequentially.Our method removes the dependence of admissible initial policies,which is one of the main drawbacks of the PI-based frameworks.Furthermore,this algorithm enables the players to adapt their control policies without full knowledge of others’ system parameters or control laws.The efficacy of our method is illustrated by three examples.展开更多
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p...The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.展开更多
While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer ...While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.展开更多
The challenge for supply chain management is to create appropriate supply chain contracts so as to optimize the system performance. To examine the role of asymmetric information in a two-echelon supply chain system an...The challenge for supply chain management is to create appropriate supply chain contracts so as to optimize the system performance. To examine the role of asymmetric information in a two-echelon supply chain system and derive supply chain contracts to deal with existing asymmetric information, a two level supply chain model including one Supplier and one retailer under the demand of price elasticity is developed. By using the principalagent principle and the optimal control theory, three types of supply chain contract, i. e. , a wholesale pricing contract, a two-parameter linear and a two-parameter nonlinear contracts are obtained. In these contracts, the Supplier has asymmetric information about the retailer cost structure. Simulation results show that the two-parameter contracts are more effective strategies to achieve supply chain coordination.展开更多
In this paper, we have discussed a random censoring test with incomplete information, and proved that the maximum likelihood estimator(MLE) of the parameter based on the randomly censored data with incomplete informat...In this paper, we have discussed a random censoring test with incomplete information, and proved that the maximum likelihood estimator(MLE) of the parameter based on the randomly censored data with incomplete information in the case of the exponential distribution has the strong consistency.展开更多
It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria...It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria is incomplete certain. A new multiple criteria decision- making method with incomplete certain information based on ternary AHP is proposed. This improves on Takeda's method. In this method, the ternary comparison matrix of the alternatives under each pseudo-criteria is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained as to normalize priority vector of the alternatives, then the order of alternatives is obtained by solving two kinds of linear programming problems. Finally, an example is given to show the feasibility and effectiveness of the method.展开更多
Nowadays, the network defence policy selection using game model of incomplete information ignores the type of the defender, which quantifies cost simply, resulting in unreasonable defence policies selection. Aiming at...Nowadays, the network defence policy selection using game model of incomplete information ignores the type of the defender, which quantifies cost simply, resulting in unreasonable defence policies selection. Aiming at the problem, we use Bayesian game theory to model the active defence policy selection. We take the types of both the attacker and the defender into consideration. Besides, the traditional quantization method is enhanced. Then, we calculate the equilibrium of static Bayesian game. Based on the analysis of the equilibrium, we select the optimal defence policy through the prediction for attackers' actions. The paper calculates the defence effectiveness of defence policies and provides a defence policies selection algorithm. Ultimately, we present an example to verify the effectiveness of the method and model proposed in the paper.展开更多
Abstract--This paper conducts a survey on iterative learn- ing control (ILC) with incomplete information and associated control system design, which is a frontier of the ILC field. The incomplete information, includ...Abstract--This paper conducts a survey on iterative learn- ing control (ILC) with incomplete information and associated control system design, which is a frontier of the ILC field. The incomplete information, including passive and active types, can cause data loss or fragment due to various factors. Passive incomplete information refers to incomplete data and information caused by practical system limitations during data collection, storage, transmission, and processing, such as data dropouts, delays, disordering, and limited transmission bandwidth. Active incomplete information refers to incomplete data and information caused by man-made reduction of data quantity and quality on the premise that the given objective is satisfied, such as sampling and quantization. This survey emphasizes two aspects: the first one is how to guarantee good learning performance and tracking performance with passive incomplete data, and the second is how to balance the control performance index and data demand by active means. The promising research directions along this topic are also addressed, where data robustness is highly emphasized. This survey is expected to improve understanding of the restrictive relationship and trade-off between incomplete data and tracking performance, quantitatively, and promote further developments of ILC theory. Index Terms--Data dropout, data robustness, incomplete in- formation, iterative learning controi(ILC), quantized control, sampled control, varying lengths.展开更多
As an essential part of the industrial Internet of Things(IoT)in power systems,the development of advanced metering infrastructure(AMI)facilitates services such as energy monitoring,load forecasting,and demand respons...As an essential part of the industrial Internet of Things(IoT)in power systems,the development of advanced metering infrastructure(AMI)facilitates services such as energy monitoring,load forecasting,and demand response.However,there is a growing risk of privacy disclosure with the wide installation of smart meters,for they transmit readings and sensitive data simultaneously.To guarantee the confidentiality of the sensitive information and authenticity of smart meter readings,we proposed a privacy-preserving scheme based on digital watermarking and elliptic-curve cryptography(ECC)asymmetric encryption.The sensitive data are encrypted using the public key and are hidden in the collected readings using digital watermark.Only the authorized user can extract watermark and can decrypt the confidential data using its private key.The proposed method realizes secure end-to-end confidentiality of the sensitive information.It has faster computing speed and can verify the data source and ensure the authenticity of readings.The example results show that the proposed method has little influence on the original data and unauthorized access cannot be completed within a reasonable time.On embedded hardware,the processing speed of the proposed method is better than the existing methods.展开更多
The generalized linear model(GLM) based on the observed data with incomplete information in the case of random censorship is defined. Under the given conditions, the existence and uniqueness of the solution on the l...The generalized linear model(GLM) based on the observed data with incomplete information in the case of random censorship is defined. Under the given conditions, the existence and uniqueness of the solution on the likelihood equations with respect to the parameter vector β of the model are discussed, and the consistency and asymptotic normality of the maximum likelihood estimator(MLE) βn^-, are proved.展开更多
The different conditions of use of a component result in a variety of damage levels.Therefore,excluding differences in shape and size,used parts show a high degree of uncertainty regarding failure characteristics,qual...The different conditions of use of a component result in a variety of damage levels.Therefore,excluding differences in shape and size,used parts show a high degree of uncertainty regarding failure characteristics,quality conditions,and remaining life,which seriously affects the efficiency of a remanufacturing scheme design.Aiming to address this problem,a remanufacturing scheme design method based on the reconstruction of incomplete information of used parts is proposed.First,the remaining life of the reconstructed model is predicted by finite element analysis,and the demand for the next life cycle is determined.Second,the scanned 3D damage point cloud data are registered with the original point cloud data using the integral iterative method to construct a missing point cloud model to achieve the restoration of geometric information.Then,according to reverse engineering and laser cladding remanufacturing,the tool remanufacturing process path can be generated by the tool contact point path section line method.Finally,the proposed method is adopted for turbine blades to evaluate the effectiveness and feasibility of the proposed scheme.This study proposes a remanufacturing scheme design method based on the incomplete reconstruction of used part information to solve the uncertain and highly personalized problems in remanufacturing.展开更多
The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evident...The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.展开更多
Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain info...Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.展开更多
Most papers about trade credit in supply chain studied retailer's inventory policy based on information shared.Few papers paid attention to supplier's trade credit policy under asymmetric information.So this p...Most papers about trade credit in supply chain studied retailer's inventory policy based on information shared.Few papers paid attention to supplier's trade credit policy under asymmetric information.So this paper tries to propose supplier's optimal trade credit policy to reveal retailer's private information.The aim is achieved by developing an incentive model with revelation principle.The retailer's private information can be found out through this trade credit policy.This contract is more general than the wholesale price contract.For the retailer's private information,the order quantity and ratio of delay in payment are distorted.Sensitivity analysis shows that the contract is influenced by sales ability and discount rate.Finally,the indirect mechanism with the same effect is proposed to make it easy to be put into practice.展开更多
The relationship between the importance of criterion and the criterion aggregation function is discussed, criterion's weight and combinational weights between some criteria are defined, and a multi-criteria classific...The relationship between the importance of criterion and the criterion aggregation function is discussed, criterion's weight and combinational weights between some criteria are defined, and a multi-criteria classification method with incomplete certain information and polynomial aggregation function is proposed. First, linear programming is constructed by classification to reference alternative set (assignment examples) and incomplete certain information on criterion's weights. Then the coefficient of the polynomial aggregation function and thresholds of categories are gained by solving the linear programming. And the consistency index of alternatives is obtained, the classification of the alternatives is achieved. The certain criteria's values of categories and uncertain criteria's values of categories are discussed in the method. Finally, an example shows the feasibility and availability of this method.展开更多
In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, t...In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.展开更多
Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence w...Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence were redefined. The algorithm can mine the association rules with decision attributes directly without processing missing values. Using the incomplete dataset Mushroom from UCI machine learning repository, the new algorithm was compared with the classical association rules mining algorithm based on Apriori from the number of rules extracted, testing accuracy and execution time. The experiment results show that the new algorithm has advantages of short execution time and high accuracy.展开更多
The threat sequencing of multiple unmanned combat air vehicles(UCAVs) is a multi-attribute decision-making(MADM)problem. In the threat sequencing process of multiple UCAVs,due to the strong confrontation and high dyna...The threat sequencing of multiple unmanned combat air vehicles(UCAVs) is a multi-attribute decision-making(MADM)problem. In the threat sequencing process of multiple UCAVs,due to the strong confrontation and high dynamics of the air combat environment, the weight coefficients of the threat indicators are usually time-varying. Moreover, the air combat data is difficult to be obtained accurately. In this study, a threat sequencing method of multiple UCAVs is proposed based on game theory by considering the incomplete information. Firstly, a zero-sum game model of decision maker( D) and nature(N)with fuzzy payoffs is established to obtain the uncertain parameters which are the weight coefficient parameters of the threat indicators and the interval parameters of the threat matrix. Then,the established zero-sum game with fuzzy payoffs is transformed into a zero-sum game with crisp payoffs(matrix game) to solve. Moreover, a decision rule is addressed for the threat sequencing problem of multiple UCAVs based on the obtained uncertain parameters. Finally, numerical simulation results are presented to show the effectiveness of the proposed approach.展开更多
As a core component of the network,web applications have become one of the preferred targets for attackers because the static configuration of web applications simplifies the exploitation of vulnerabilities by attacke...As a core component of the network,web applications have become one of the preferred targets for attackers because the static configuration of web applications simplifies the exploitation of vulnerabilities by attackers.Although the moving target defense(MTD)has been proposed to increase the attack difficulty for the attackers,there is no solo approach can cope with different attacks;in addition,it is impossible to implement all these approaches simultaneously due to the resource limitation.Thus,the selection of an optimal defense strategy based on MTD has become the focus of research.In general,the confrontation of two players in the security domain is viewed as a stochastic game,and the reward matrices are known to both players.However,in a real security confrontation,this scenario represents an incomplete information game.Each player can only observe the actions performed by the opponent,and the observed actions are not completely accurate.To accurately describe the attacker’s reward function to reach the Nash equilibrium,this work simulated and updated the strategy selection distribution of the attacker by observing and investigating the strategy selection history of the attacker.Next,the possible rewards of the attacker in each confrontation via the observation matrix were corrected.On this basis,the Nash-Q learning algorithm with reward quantification was proposed to select the optimal strategy.Moreover,the performances of the Minimax-Q learning algorithm and Naive-Q learning algorithm were compared and analyzed in the MTD environment.Finally,the experimental results showed that the strategy selection algorithm can enable defenders to select a more reasonable defensive strategy and achieve the maximum possible reward.展开更多
the financial support of the National Social Science Foundation of China (14ZDA038);the National Natural Science Foundation of China (71222302;71373255;71573133);the Institute of Geographic Sciences and Natural Re...the financial support of the National Social Science Foundation of China (14ZDA038);the National Natural Science Foundation of China (71222302;71373255;71573133);the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (2012RC102)展开更多
基金supported by the Industry-University-Research Cooperation Fund Project of the Eighth Research Institute of China Aerospace Science and Technology Corporation (USCAST2022-11)Aeronautical Science Foundation of China (20220001057001)。
文摘This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the learning process and adapt their policies sequentially.Our method removes the dependence of admissible initial policies,which is one of the main drawbacks of the PI-based frameworks.Furthermore,this algorithm enables the players to adapt their control policies without full knowledge of others’ system parameters or control laws.The efficacy of our method is illustrated by three examples.
基金supported by the National Natural Science Foundation of China(62273213,62073199,62103241)Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)+4 种基金Natural Science Foundation of Shandong Province(ZR2020MF095,ZR2021QF107)Taishan Scholarship Construction Engineeringthe Original Exploratory Program Project of National Natural Science Foundation of China(62250056)Major Basic Research of Natural Science Foundation of Shandong Province(ZR2021ZD14)High-level Talent Team Project of Qingdao West Coast New Area(RCTD-JC-2019-05)。
文摘The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Project for the Natural Science Foundation of Shanghai, China (Grant No. 21ZR1444100)
文摘While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.
文摘The challenge for supply chain management is to create appropriate supply chain contracts so as to optimize the system performance. To examine the role of asymmetric information in a two-echelon supply chain system and derive supply chain contracts to deal with existing asymmetric information, a two level supply chain model including one Supplier and one retailer under the demand of price elasticity is developed. By using the principalagent principle and the optimal control theory, three types of supply chain contract, i. e. , a wholesale pricing contract, a two-parameter linear and a two-parameter nonlinear contracts are obtained. In these contracts, the Supplier has asymmetric information about the retailer cost structure. Simulation results show that the two-parameter contracts are more effective strategies to achieve supply chain coordination.
文摘In this paper, we have discussed a random censoring test with incomplete information, and proved that the maximum likelihood estimator(MLE) of the parameter based on the randomly censored data with incomplete information in the case of the exponential distribution has the strong consistency.
文摘It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria is incomplete certain. A new multiple criteria decision- making method with incomplete certain information based on ternary AHP is proposed. This improves on Takeda's method. In this method, the ternary comparison matrix of the alternatives under each pseudo-criteria is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained as to normalize priority vector of the alternatives, then the order of alternatives is obtained by solving two kinds of linear programming problems. Finally, an example is given to show the feasibility and effectiveness of the method.
基金supported by the National Natural Science Foundation of China under Grant No. 61303074 and No. 61309013the Henan Province Science and Technology Project Funds under Grant No. 12210231002
文摘Nowadays, the network defence policy selection using game model of incomplete information ignores the type of the defender, which quantifies cost simply, resulting in unreasonable defence policies selection. Aiming at the problem, we use Bayesian game theory to model the active defence policy selection. We take the types of both the attacker and the defender into consideration. Besides, the traditional quantization method is enhanced. Then, we calculate the equilibrium of static Bayesian game. Based on the analysis of the equilibrium, we select the optimal defence policy through the prediction for attackers' actions. The paper calculates the defence effectiveness of defence policies and provides a defence policies selection algorithm. Ultimately, we present an example to verify the effectiveness of the method and model proposed in the paper.
基金supported by the National Natural Science Foundation of China(61673045)Beijing Natural Science Foundation(4152040)
文摘Abstract--This paper conducts a survey on iterative learn- ing control (ILC) with incomplete information and associated control system design, which is a frontier of the ILC field. The incomplete information, including passive and active types, can cause data loss or fragment due to various factors. Passive incomplete information refers to incomplete data and information caused by practical system limitations during data collection, storage, transmission, and processing, such as data dropouts, delays, disordering, and limited transmission bandwidth. Active incomplete information refers to incomplete data and information caused by man-made reduction of data quantity and quality on the premise that the given objective is satisfied, such as sampling and quantization. This survey emphasizes two aspects: the first one is how to guarantee good learning performance and tracking performance with passive incomplete data, and the second is how to balance the control performance index and data demand by active means. The promising research directions along this topic are also addressed, where data robustness is highly emphasized. This survey is expected to improve understanding of the restrictive relationship and trade-off between incomplete data and tracking performance, quantitatively, and promote further developments of ILC theory. Index Terms--Data dropout, data robustness, incomplete in- formation, iterative learning controi(ILC), quantized control, sampled control, varying lengths.
基金Project(SGZJHZ00HLJS2000871)supported by the State Grid Science and Technology Project,China。
文摘As an essential part of the industrial Internet of Things(IoT)in power systems,the development of advanced metering infrastructure(AMI)facilitates services such as energy monitoring,load forecasting,and demand response.However,there is a growing risk of privacy disclosure with the wide installation of smart meters,for they transmit readings and sensitive data simultaneously.To guarantee the confidentiality of the sensitive information and authenticity of smart meter readings,we proposed a privacy-preserving scheme based on digital watermarking and elliptic-curve cryptography(ECC)asymmetric encryption.The sensitive data are encrypted using the public key and are hidden in the collected readings using digital watermark.Only the authorized user can extract watermark and can decrypt the confidential data using its private key.The proposed method realizes secure end-to-end confidentiality of the sensitive information.It has faster computing speed and can verify the data source and ensure the authenticity of readings.The example results show that the proposed method has little influence on the original data and unauthorized access cannot be completed within a reasonable time.On embedded hardware,the processing speed of the proposed method is better than the existing methods.
文摘The generalized linear model(GLM) based on the observed data with incomplete information in the case of random censorship is defined. Under the given conditions, the existence and uniqueness of the solution on the likelihood equations with respect to the parameter vector β of the model are discussed, and the consistency and asymptotic normality of the maximum likelihood estimator(MLE) βn^-, are proved.
基金Supported by Plateau Disciplines in ShanghaiNational Natural Science Foundation of China (Grant No. 51675388)Hubei Provincial Department of Education of China (Grant No. D20181102)
文摘The different conditions of use of a component result in a variety of damage levels.Therefore,excluding differences in shape and size,used parts show a high degree of uncertainty regarding failure characteristics,quality conditions,and remaining life,which seriously affects the efficiency of a remanufacturing scheme design.Aiming to address this problem,a remanufacturing scheme design method based on the reconstruction of incomplete information of used parts is proposed.First,the remaining life of the reconstructed model is predicted by finite element analysis,and the demand for the next life cycle is determined.Second,the scanned 3D damage point cloud data are registered with the original point cloud data using the integral iterative method to construct a missing point cloud model to achieve the restoration of geometric information.Then,according to reverse engineering and laser cladding remanufacturing,the tool remanufacturing process path can be generated by the tool contact point path section line method.Finally,the proposed method is adopted for turbine blades to evaluate the effectiveness and feasibility of the proposed scheme.This study proposes a remanufacturing scheme design method based on the incomplete reconstruction of used part information to solve the uncertain and highly personalized problems in remanufacturing.
基金supported by the National Natural Science Foundation of China(7077111570921001)and Key Project of National Natural Science Foundation of China(70631004)
文摘The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(Grant No.61933010 and 61903301)Shaanxi Aerospace Flight Vehicle Design Key Laboratory。
文摘Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.
基金National Natural Science Foundation of China (No. 70571055)
文摘Most papers about trade credit in supply chain studied retailer's inventory policy based on information shared.Few papers paid attention to supplier's trade credit policy under asymmetric information.So this paper tries to propose supplier's optimal trade credit policy to reveal retailer's private information.The aim is achieved by developing an incentive model with revelation principle.The retailer's private information can be found out through this trade credit policy.This contract is more general than the wholesale price contract.For the retailer's private information,the order quantity and ratio of delay in payment are distorted.Sensitivity analysis shows that the contract is influenced by sales ability and discount rate.Finally,the indirect mechanism with the same effect is proposed to make it easy to be put into practice.
基金This project was supported by the Social Science Foundation of Hunan(05YB74)
文摘The relationship between the importance of criterion and the criterion aggregation function is discussed, criterion's weight and combinational weights between some criteria are defined, and a multi-criteria classification method with incomplete certain information and polynomial aggregation function is proposed. First, linear programming is constructed by classification to reference alternative set (assignment examples) and incomplete certain information on criterion's weights. Then the coefficient of the polynomial aggregation function and thresholds of categories are gained by solving the linear programming. And the consistency index of alternatives is obtained, the classification of the alternatives is achieved. The certain criteria's values of categories and uncertain criteria's values of categories are discussed in the method. Finally, an example shows the feasibility and availability of this method.
基金supported by Program for New Century Excellent Talents in Universities of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant Nos.60677001 and 10747146+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ056
文摘In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.
基金Projects(10871031, 60474070) supported by the National Natural Science Foundation of ChinaProject(07A001) supported by the Scientific Research Fund of Hunan Provincial Education Department, China
文摘Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence were redefined. The algorithm can mine the association rules with decision attributes directly without processing missing values. Using the incomplete dataset Mushroom from UCI machine learning repository, the new algorithm was compared with the classical association rules mining algorithm based on Apriori from the number of rules extracted, testing accuracy and execution time. The experiment results show that the new algorithm has advantages of short execution time and high accuracy.
基金supported by the Major Projects for Science and Technology Innovation 2030 (2018AAA0100805)。
文摘The threat sequencing of multiple unmanned combat air vehicles(UCAVs) is a multi-attribute decision-making(MADM)problem. In the threat sequencing process of multiple UCAVs,due to the strong confrontation and high dynamics of the air combat environment, the weight coefficients of the threat indicators are usually time-varying. Moreover, the air combat data is difficult to be obtained accurately. In this study, a threat sequencing method of multiple UCAVs is proposed based on game theory by considering the incomplete information. Firstly, a zero-sum game model of decision maker( D) and nature(N)with fuzzy payoffs is established to obtain the uncertain parameters which are the weight coefficient parameters of the threat indicators and the interval parameters of the threat matrix. Then,the established zero-sum game with fuzzy payoffs is transformed into a zero-sum game with crisp payoffs(matrix game) to solve. Moreover, a decision rule is addressed for the threat sequencing problem of multiple UCAVs based on the obtained uncertain parameters. Finally, numerical simulation results are presented to show the effectiveness of the proposed approach.
基金This paper is supported by the National Key R&D Program of China(2017YFB0802703)the National Nature Science Foundation of China(61602052).
文摘As a core component of the network,web applications have become one of the preferred targets for attackers because the static configuration of web applications simplifies the exploitation of vulnerabilities by attackers.Although the moving target defense(MTD)has been proposed to increase the attack difficulty for the attackers,there is no solo approach can cope with different attacks;in addition,it is impossible to implement all these approaches simultaneously due to the resource limitation.Thus,the selection of an optimal defense strategy based on MTD has become the focus of research.In general,the confrontation of two players in the security domain is viewed as a stochastic game,and the reward matrices are known to both players.However,in a real security confrontation,this scenario represents an incomplete information game.Each player can only observe the actions performed by the opponent,and the observed actions are not completely accurate.To accurately describe the attacker’s reward function to reach the Nash equilibrium,this work simulated and updated the strategy selection distribution of the attacker by observing and investigating the strategy selection history of the attacker.Next,the possible rewards of the attacker in each confrontation via the observation matrix were corrected.On this basis,the Nash-Q learning algorithm with reward quantification was proposed to select the optimal strategy.Moreover,the performances of the Minimax-Q learning algorithm and Naive-Q learning algorithm were compared and analyzed in the MTD environment.Finally,the experimental results showed that the strategy selection algorithm can enable defenders to select a more reasonable defensive strategy and achieve the maximum possible reward.
基金the financial support of the National Social Science Foundation of China (14ZDA038)the National Natural Science Foundation of China (71222302+2 种基金7137325571573133)the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (2012RC102)
文摘the financial support of the National Social Science Foundation of China (14ZDA038);the National Natural Science Foundation of China (71222302;71373255;71573133);the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (2012RC102)