In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow t...In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow term inR^(2) and R^(3).Our methods rely upon approximating the system with a perturbed parabolic system and parallel transport.展开更多
In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also...In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.展开更多
In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar...In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain.In particular,we establish the uniform estimate of the strong solutions for when the boundary is flat.Furthermore,we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero(i.e.,(ε,χ,γ,κ)→0).展开更多
The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries...The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.展开更多
In this paper, we establish the existence of the global weak solutions for the non-homogeneous incompressible magnetohydrodynamic equations with Navier boundary condi-tions for the velocity field and the magnetic fiel...In this paper, we establish the existence of the global weak solutions for the non-homogeneous incompressible magnetohydrodynamic equations with Navier boundary condi-tions for the velocity field and the magnetic field in a bounded domain Ω R^3. Furthermore,we prove that as the viscosity and resistivity coefficients go to zero simultaneously, these weaksolutions converge to the strong one of the ideal nonhomogeneous incompressible magneto-hydrodynamic equations in energy space.展开更多
In this paper, a sufficient and necessary condition is presented for existence of a class of exact solutions to N-dimensional incompressible magnetohydrodynamic (MHD) equations. Such solutions can be explicitly expr...In this paper, a sufficient and necessary condition is presented for existence of a class of exact solutions to N-dimensional incompressible magnetohydrodynamic (MHD) equations. Such solutions can be explicitly expressed by appropriate formulae. Once the required matrices are chosen, solutions to the MHD equations axe directly constructed.展开更多
The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The cal...The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.展开更多
For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grid...For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.展开更多
We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first e...We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ...Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.展开更多
The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes...The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes equations linearized around a fixed velocity flow: the authors study the convergence as ε →0 to the inviscid type equations, the authors define the correctors needed to resolve the boundary layer and obtain convergence results valid up to the boundary and the authors also study the behavior of the boundary layer when, simultaneously, time and the Reynolds number tend to infinity, in which case the boundary layer tends to pervade the whole domain.展开更多
In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then ob...In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.展开更多
In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is s...In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is suitable for simulating two-way coupling incompressible multiphase flow The 2-D particle-laden flow over a backward-facing step is chosen as a test case to validate the present method. Favorable results are obtained and the present scheme is shown to have good prospects in practical applications.展开更多
A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and...A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q1^4ot element a...This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q1^4ot element and the piecewise constant, respectively. The superconvergent error estimates of the velocity in the broken H^1-norm and the pressure in the L^2-norm are obtained respectively when the exact solutions are reasonably smooth. A numerical experiment is carried out to confirm the theoretical results.展开更多
In this paper, we consider the nonlinear instability of incompressible Euler equations. If a steady density is non-monotonic, then the smooth steady state is a nonlinear instability. First, we use variational method t...In this paper, we consider the nonlinear instability of incompressible Euler equations. If a steady density is non-monotonic, then the smooth steady state is a nonlinear instability. First, we use variational method to find a dominant eigenvalue which is important in the construction of approximate solutions, then by energy technique and analytic method, we obtain the dynamical instability result.展开更多
The short-range property of interactions between scales in incompressible turbulent flow was examined. Some formulae for the short-range eddy stress were given. A concept of resonant-range interactions between extreme...The short-range property of interactions between scales in incompressible turbulent flow was examined. Some formulae for the short-range eddy stress were given. A concept of resonant-range interactions between extremely contiguous scales was introduced and some formulae for the resonant-range eddy stress were also derived. Multi-scale equations for the incompressible turbulent flows were proposed. Key words turbulence - incompressible flow - interactions between scales - multi-scale equations MSC 2000 76F70展开更多
In this work we prove the weighted Gevrey regularity of solutions to the incompressible Euler equation with initial data decaying polynomially at infinity. This is motivated by the well-posedness problem of vertical b...In this work we prove the weighted Gevrey regularity of solutions to the incompressible Euler equation with initial data decaying polynomially at infinity. This is motivated by the well-posedness problem of vertical boundary layer equation for fast rotating fluid. The method presented here is based on the basic weighted L;-estimate, and the main difficulty arises from the estimate on the pressure term due to the appearance of weight function.展开更多
文摘In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow term inR^(2) and R^(3).Our methods rely upon approximating the system with a perturbed parabolic system and parallel transport.
基金supported by the National Science Foundation of China(11271127)Science Research Project of Guizhou Province Education Department(QJHKYZ[2013]207)
文摘In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.
基金supported by the NSFC(11871412)the Postgraduate Scientific Research Innovation Project of Xiangtan University(XDCX2020B088)。
文摘In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain.In particular,we establish the uniform estimate of the strong solutions for when the boundary is flat.Furthermore,we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero(i.e.,(ε,χ,γ,κ)→0).
基金Supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute under Grant No. 408YKQ09the National Natural Science Foundation of China under Grant No. 10735030
文摘The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.
文摘In this paper, we establish the existence of the global weak solutions for the non-homogeneous incompressible magnetohydrodynamic equations with Navier boundary condi-tions for the velocity field and the magnetic field in a bounded domain Ω R^3. Furthermore,we prove that as the viscosity and resistivity coefficients go to zero simultaneously, these weaksolutions converge to the strong one of the ideal nonhomogeneous incompressible magneto-hydrodynamic equations in energy space.
文摘In this paper, a sufficient and necessary condition is presented for existence of a class of exact solutions to N-dimensional incompressible magnetohydrodynamic (MHD) equations. Such solutions can be explicitly expressed by appropriate formulae. Once the required matrices are chosen, solutions to the MHD equations axe directly constructed.
基金Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 10452840301004616 and S2011040000403)the National Natural Science Foundation of China (Grant No. 41176005)the Science and Technology Project Foundation of Zhongshan, China (Grnat No. 20123A326)
文摘The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.
文摘For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.
文摘We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
文摘Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.
文摘The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes equations linearized around a fixed velocity flow: the authors study the convergence as ε →0 to the inviscid type equations, the authors define the correctors needed to resolve the boundary layer and obtain convergence results valid up to the boundary and the authors also study the behavior of the boundary layer when, simultaneously, time and the Reynolds number tend to infinity, in which case the boundary layer tends to pervade the whole domain.
基金Supported by NSFC (10976026)supported by the Fundamental Research Funds for the Central Universities (11QZR18)the Research Funds for high-level talents of Huaqiao University (12BS232)
文摘In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.
基金The project supported by the National Natural Science Foundation of China(60073044)the State Key Development Programme for Basic Research of China(G1990022207).
文摘In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is suitable for simulating two-way coupling incompressible multiphase flow The 2-D particle-laden flow over a backward-facing step is chosen as a test case to validate the present method. Favorable results are obtained and the present scheme is shown to have good prospects in practical applications.
文摘A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
基金Project supported by the National Natural Science Foundation of China(No.11271340)
文摘This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q1^4ot element and the piecewise constant, respectively. The superconvergent error estimates of the velocity in the broken H^1-norm and the pressure in the L^2-norm are obtained respectively when the exact solutions are reasonably smooth. A numerical experiment is carried out to confirm the theoretical results.
基金supported by the NSFC (11071094)supported by the NSFC (The Youth Foundation) (10901068)CCNU Project (CCNU09A01004)
文摘In this paper, we consider the nonlinear instability of incompressible Euler equations. If a steady density is non-monotonic, then the smooth steady state is a nonlinear instability. First, we use variational method to find a dominant eigenvalue which is important in the construction of approximate solutions, then by energy technique and analytic method, we obtain the dynamical instability result.
文摘The short-range property of interactions between scales in incompressible turbulent flow was examined. Some formulae for the short-range eddy stress were given. A concept of resonant-range interactions between extremely contiguous scales was introduced and some formulae for the resonant-range eddy stress were also derived. Multi-scale equations for the incompressible turbulent flows were proposed. Key words turbulence - incompressible flow - interactions between scales - multi-scale equations MSC 2000 76F70
基金supported by NSF of China(11422106)the NSF of China(11171261)+1 种基金Fok Ying Tung Education Foundation(151001)supported by“Fundamental Research Funds for the Central Universities”
文摘In this work we prove the weighted Gevrey regularity of solutions to the incompressible Euler equation with initial data decaying polynomially at infinity. This is motivated by the well-posedness problem of vertical boundary layer equation for fast rotating fluid. The method presented here is based on the basic weighted L;-estimate, and the main difficulty arises from the estimate on the pressure term due to the appearance of weight function.