Torsional instability of an incompressible thermo-hyperelastic cylindrical rod, subjected to axial stretching and large torsions, is examined within the framework of finite elasticity. When the cylinder is stretched a...Torsional instability of an incompressible thermo-hyperelastic cylindrical rod, subjected to axial stretching and large torsions, is examined within the framework of finite elasticity. When the cylinder is stretched and twisted by a sufficiently large degree, a knot may form suddenly at one point. This inherent elastic instability is analyzed with the minimum potential energy principle and the critical values of torsion are obtained. The distribution of stresses as well as the tensile force and the torque are studied. Effect of tem- perature change is specifically discussed.展开更多
A finite deformation problem is examined for a cylinder composed of a class of incompressible thermo-hyperelastic Mooney-Rivlin materials under an equal axial load at its two fixed ends and a temperature field at its ...A finite deformation problem is examined for a cylinder composed of a class of incompressible thermo-hyperelastic Mooney-Rivlin materials under an equal axial load at its two fixed ends and a temperature field at its lateral boundary. Firstly, a thermomechanical coupling term is taken into account in the strain energy density function, and a governing equation of the problem is obtained. Secondly, an implicit analytical solution is derived by using the incompressibility and the boundary conditions. Significantly, numerical examples show that the middle portion of the cylinder undergoes almost a uniform radial deformation. However, the deformation near the two ends varies remarkably along the axial direction for relatively large axial loads. In addition, the rising temperature can increase the deformation of structures, and its influence is linear approximately. Specially,in the case of tensile load, the jump increase of the axial deformation may occur.展开更多
The possible states in the flow past two identical cylinders in tandem arrangements are investigated. The effect of the gap (L/D = 1.5, 1.75 and 2) between the two cylinders at Reynolds number (Re = 52,639) is tak...The possible states in the flow past two identical cylinders in tandem arrangements are investigated. The effect of the gap (L/D = 1.5, 1.75 and 2) between the two cylinders at Reynolds number (Re = 52,639) is taken into consideration. The presence of three-dimensional flow structures was observed to include notable changes to the response of the flow as result of variation of cylinder separation. A number of planes (z/h = 0.02, 0.25, 0.5 and 0.98) were taken at 20 step times of interval 0.005 s. to cover the details of flow along the cylinders. CFD FLUENT program was used to detect the flow structure. It is observed that the gap between the two cylinders affects the flow regime, i.e., there is no distinct vortex shedding downstream of the first cylinder.展开更多
In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split i...In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.展开更多
Results of numerical calcultions for viscous incompressible laminar flow over a rearwardfacing step on circular cylinder are presented. The domainsubdividing and matching method and the simplify SOLA solution are enga...Results of numerical calcultions for viscous incompressible laminar flow over a rearwardfacing step on circular cylinder are presented. The domainsubdividing and matching method and the simplify SOLA solution are engaged in the simulation. The effects of the step’s height,installed position and the Reynolds number on the flow field are obtained and discussed.展开更多
The paper studies the problem of fluid flow and fluid shear stress in canaliculi when the osteon is subject to external mechanical loading and blood pressure oscillation.The single osteon is modeled as a saturated por...The paper studies the problem of fluid flow and fluid shear stress in canaliculi when the osteon is subject to external mechanical loading and blood pressure oscillation.The single osteon is modeled as a saturated poroelastic cylinder. Solid skeleton is regarded as a poroelastic transversely isotropic material. To get near-realistic results, both the interstitial fluid and the solid matrix are regarded as compressible. Blood pressure oscillation in the Haverian canal is considered. Using the poroelasticity theory, an analytical solution of the pore fluid pressure is obtained. Assuming the fluid in canaliculi is incompressible, analytical solutions of fluid flow velocity and fluid shear stress with the Navier-Stokes equations of incompressible fluid are obtained. The effect of various parameters on the fluid flow velocity and fluid shear stress is studied.展开更多
In the present study we investigate the 3-D hydrodynamic slamming problem on a vertical cylinder due to the impact of a steep wave that is moving with a steady velocity.The linear theory of the velocity potential is e...In the present study we investigate the 3-D hydrodynamic slamming problem on a vertical cylinder due to the impact of a steep wave that is moving with a steady velocity.The linear theory of the velocity potential is employed by assuming inviscid,incompressible fluid and irrotational flow.As the problem is set in 3-D space,the employment of the Wagner condition is essential.The set of equations we pose,is presented as a mixed boundary value problem for Laplace's equation in 3-D.Apart from the mixedtype of boundary conditions,the problem is complicated by considering that the region of wetted surface of the cylinder is a set whose boundary depends on the vertical coordinate on the cylinder up to the free-surface.We make some simple assumptions at the start but otherwise we proceed analytically.We find closed-form relations for the hydrodynamic variables,namely the time dependent potential,the pressure impulse,the shape of the wave front(from the contact point to beyond the cylinder) and the slamming force.展开更多
利用Gao Y C给出的一类不可压缩的应变能函数,分析了不均匀橡胶圆柱体受平面外剪切变形问题。通过平面外剪切变形问题的变形模式,并结合应力和位移的边界条件以及界面连续条件得到了位移场和应力场在瞬时构型中的解析解,并讨论了材料的...利用Gao Y C给出的一类不可压缩的应变能函数,分析了不均匀橡胶圆柱体受平面外剪切变形问题。通过平面外剪切变形问题的变形模式,并结合应力和位移的边界条件以及界面连续条件得到了位移场和应力场在瞬时构型中的解析解,并讨论了材料的不均匀性对位移场及应力场分布的影响。结果表明:不均匀模型可以方便地退化成均匀模型;橡胶圆柱体的不均匀性对位移场和应力场的分布有着重要影响。展开更多
Suppose that the motion of the water is produced by the small amplitude periodic motion of a partially immersed cylinder and the water is incompressible, inviscid and irrotational. We denote by C the wetted curve of t...Suppose that the motion of the water is produced by the small amplitude periodic motion of a partially immersed cylinder and the water is incompressible, inviscid and irrotational. We denote by C the wetted curve of the cylinder cross section. Let the coordinate axis ox be along the undisturbed free surface and let oy lie in the C plane, be vertical and point downward to the water. Let the origin o be at the center of the x-axis within the cylinder cross section. We denote by a the distance between the origin and the intersection point of the curve C and the x-axis. We may use the velocity potential φ(x, y) exp (—iωt) to describe the motion of the water with angular frequency to in the half-plane y>0. Then, φ(x, y) satisfies the following展开更多
A local domain-free discretization-immersed boundary method(DFDIBM)is presented in this paper to solve incompressible Navier-Stokes equations in the primitive variable form.Like the conventional immersed boundary meth...A local domain-free discretization-immersed boundary method(DFDIBM)is presented in this paper to solve incompressible Navier-Stokes equations in the primitive variable form.Like the conventional immersed boundary method(IBM),the local DFD-IBM solves the governing equations in the whole domain including exterior and interior of the immersed object.The effect of immersed boundary to the surrounding fluids is through the evaluation of velocity at interior and exterior dependent points.To be specific,the velocity at interior dependent points is computed by approximate forms of solution and the velocity at exterior dependent points is set to the wall velocity.As compared to the conventional IBM,the present approach accurately implements the non-slip boundary condition.As a result,there is no flow penetration,which is often appeared in the conventional IBM results.The present approach is validated by its application to simulate incompressible viscous flows around a circular cylinder.The obtained numerical results agree very well with the data in the literature.展开更多
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the h...Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ε model and Shear-Stress Transport κ-ω(SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3–1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.展开更多
基金The project supported by the National Natural Science Foundation of China (10402018, 10272069) and Shanghai Key Project Program (Y0103) The English text was polished by Keren Wang.
文摘Torsional instability of an incompressible thermo-hyperelastic cylindrical rod, subjected to axial stretching and large torsions, is examined within the framework of finite elasticity. When the cylinder is stretched and twisted by a sufficiently large degree, a knot may form suddenly at one point. This inherent elastic instability is analyzed with the minimum potential energy principle and the critical values of torsion are obtained. The distribution of stresses as well as the tensile force and the torque are studied. Effect of tem- perature change is specifically discussed.
基金supported by the National Natural Science Foundation of China(Nos.11672069,11702059,11232003,and 11672062)the Ph.D Programs Foundation of Ministry of Education of China(No.20130041110050)+1 种基金the Natural Science Foundation of Liaoning Province of China(Nos.20170540199and 2014020137)the Programme of Introducing Talents of Discipline to Universities(No.B08014)
文摘A finite deformation problem is examined for a cylinder composed of a class of incompressible thermo-hyperelastic Mooney-Rivlin materials under an equal axial load at its two fixed ends and a temperature field at its lateral boundary. Firstly, a thermomechanical coupling term is taken into account in the strain energy density function, and a governing equation of the problem is obtained. Secondly, an implicit analytical solution is derived by using the incompressibility and the boundary conditions. Significantly, numerical examples show that the middle portion of the cylinder undergoes almost a uniform radial deformation. However, the deformation near the two ends varies remarkably along the axial direction for relatively large axial loads. In addition, the rising temperature can increase the deformation of structures, and its influence is linear approximately. Specially,in the case of tensile load, the jump increase of the axial deformation may occur.
文摘The possible states in the flow past two identical cylinders in tandem arrangements are investigated. The effect of the gap (L/D = 1.5, 1.75 and 2) between the two cylinders at Reynolds number (Re = 52,639) is taken into consideration. The presence of three-dimensional flow structures was observed to include notable changes to the response of the flow as result of variation of cylinder separation. A number of planes (z/h = 0.02, 0.25, 0.5 and 0.98) were taken at 20 step times of interval 0.005 s. to cover the details of flow along the cylinders. CFD FLUENT program was used to detect the flow structure. It is observed that the gap between the two cylinders affects the flow regime, i.e., there is no distinct vortex shedding downstream of the first cylinder.
基金financially supported by the National Natural Science Foundation of China(Grant No.51349011)the Foundation of Si’chuan Educational Committee(Grant No.17ZB0452)+1 种基金the Innovation Team Project of Si’chuan Educational Committee(Grant No.18TD0019)the Longshan Academic Talent Research Support Program of the Southwest of Science and Technology(Grant Nos.18LZX715 and 18LZX410)
文摘In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.
文摘Results of numerical calcultions for viscous incompressible laminar flow over a rearwardfacing step on circular cylinder are presented. The domainsubdividing and matching method and the simplify SOLA solution are engaged in the simulation. The effects of the step’s height,installed position and the Reynolds number on the flow field are obtained and discussed.
基金Project supported by the National Natural Science Foundation of China(No.11032005)
文摘The paper studies the problem of fluid flow and fluid shear stress in canaliculi when the osteon is subject to external mechanical loading and blood pressure oscillation.The single osteon is modeled as a saturated poroelastic cylinder. Solid skeleton is regarded as a poroelastic transversely isotropic material. To get near-realistic results, both the interstitial fluid and the solid matrix are regarded as compressible. Blood pressure oscillation in the Haverian canal is considered. Using the poroelasticity theory, an analytical solution of the pore fluid pressure is obtained. Assuming the fluid in canaliculi is incompressible, analytical solutions of fluid flow velocity and fluid shear stress with the Navier-Stokes equations of incompressible fluid are obtained. The effect of various parameters on the fluid flow velocity and fluid shear stress is studied.
文摘In the present study we investigate the 3-D hydrodynamic slamming problem on a vertical cylinder due to the impact of a steep wave that is moving with a steady velocity.The linear theory of the velocity potential is employed by assuming inviscid,incompressible fluid and irrotational flow.As the problem is set in 3-D space,the employment of the Wagner condition is essential.The set of equations we pose,is presented as a mixed boundary value problem for Laplace's equation in 3-D.Apart from the mixedtype of boundary conditions,the problem is complicated by considering that the region of wetted surface of the cylinder is a set whose boundary depends on the vertical coordinate on the cylinder up to the free-surface.We make some simple assumptions at the start but otherwise we proceed analytically.We find closed-form relations for the hydrodynamic variables,namely the time dependent potential,the pressure impulse,the shape of the wave front(from the contact point to beyond the cylinder) and the slamming force.
文摘利用Gao Y C给出的一类不可压缩的应变能函数,分析了不均匀橡胶圆柱体受平面外剪切变形问题。通过平面外剪切变形问题的变形模式,并结合应力和位移的边界条件以及界面连续条件得到了位移场和应力场在瞬时构型中的解析解,并讨论了材料的不均匀性对位移场及应力场分布的影响。结果表明:不均匀模型可以方便地退化成均匀模型;橡胶圆柱体的不均匀性对位移场和应力场的分布有着重要影响。
文摘Suppose that the motion of the water is produced by the small amplitude periodic motion of a partially immersed cylinder and the water is incompressible, inviscid and irrotational. We denote by C the wetted curve of the cylinder cross section. Let the coordinate axis ox be along the undisturbed free surface and let oy lie in the C plane, be vertical and point downward to the water. Let the origin o be at the center of the x-axis within the cylinder cross section. We denote by a the distance between the origin and the intersection point of the curve C and the x-axis. We may use the velocity potential φ(x, y) exp (—iωt) to describe the motion of the water with angular frequency to in the half-plane y>0. Then, φ(x, y) satisfies the following
文摘A local domain-free discretization-immersed boundary method(DFDIBM)is presented in this paper to solve incompressible Navier-Stokes equations in the primitive variable form.Like the conventional immersed boundary method(IBM),the local DFD-IBM solves the governing equations in the whole domain including exterior and interior of the immersed object.The effect of immersed boundary to the surrounding fluids is through the evaluation of velocity at interior and exterior dependent points.To be specific,the velocity at interior dependent points is computed by approximate forms of solution and the velocity at exterior dependent points is set to the wall velocity.As compared to the conventional IBM,the present approach accurately implements the non-slip boundary condition.As a result,there is no flow penetration,which is often appeared in the conventional IBM results.The present approach is validated by its application to simulate incompressible viscous flows around a circular cylinder.The obtained numerical results agree very well with the data in the literature.
基金supported by the National Natural Science Foundation of China (31072246, 30972256)Special Fund for Research on high efficient techniques for Antarctic Krill (20150256)+1 种基金Agro-Scientific Research in the Public Interest (201203018, 201303050-02)the Fundamental Research Funds for Chinese Academy of Fishery Sciences (CAFS) (2012A1301)
文摘Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ε model and Shear-Stress Transport κ-ω(SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3–1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.