期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
ZERO KINEMATIC VISCOSITY-MAGNETIC DIFFUSION LIMIT OF THE INCOMPRESSIBLE VISCOUS MAGNETOHYDRODYNAMIC EQUATIONS WITH NAVIER BOUNDARY CONDITIONS
1
作者 Fucai LI Zhipeng ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2021年第5期1503-1536,共34页
We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectl... We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0. 展开更多
关键词 incompressible viscous mhd equations ideal incompressible mhd equations Navier boundary conditions zero kinematic viscosity-magnetic diffusion limit
下载PDF
关于无磁阻抗和无热耗散的MHD-Boussinesq系统的Prodi-Serrin型爆破准则
2
作者 纪梓汉 潘星宏 《高校应用数学学报(A辑)》 北大核心 2023年第3期339-346,共8页
由速度的Prodi-Serrin条件推导出无磁阻抗,无热耗散的MHD-Boussinesq系统解的正则性.对磁场或温度变化没有作出先验假设.
关键词 不可压缩 mhd-Boussinesq系统 正则性准则 无磁阻抗 无热耗散
下载PDF
完美传导边界条件不可压磁流体系统及解的注记
3
作者 吴忠林 《河南科学》 2014年第8期1395-1398,共4页
首先给出三种不可压磁流体方程组及其相互关系,其次给出这三种模型解的已有结果,最后指出由该模型衍生的相关公开问题.
关键词 不可压黏性和磁扩散mhd方程 各向异性mhd方程 理想无黏性不可压mhd方程 边界层 完美传 导物理边界条件
下载PDF
DIFFUSION VANISHING LIMIT OF THE NONLINEAR PIPE MAGNETOHYDRODYNAMIC FLOW WITH FIXED VISCOSITY
4
作者 吴忠林 王术 《Acta Mathematica Scientia》 SCIE CSCD 2018年第2期627-642,共16页
We establish magnetic diffusion vanishing limit of the nonlinear pipe Magnetohy- drodynamic flow by the mathematical validity of the Prandtl boundary layer theory with fixed viscosity. The convergence is verified unde... We establish magnetic diffusion vanishing limit of the nonlinear pipe Magnetohy- drodynamic flow by the mathematical validity of the Prandtl boundary layer theory with fixed viscosity. The convergence is verified under various Sobolev norms, including the L∞(L2) and L∞(H1) norm. 展开更多
关键词 incompressible viscous mhd system nonmagnetic mhd system boundary layer Prandtl theory correetor
下载PDF
Transportation of heat through Cattaneo-Christov heat flux model in non-Newtonian fluid subject to internal resistance of particles
5
作者 M.I.KHAN F.ALZAHRANI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第8期1157-1166,共10页
Thermal conduction which happens in all phases(liquid,solid,and gas)is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding part... Thermal conduction which happens in all phases(liquid,solid,and gas)is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding particles comprise electrons,molecules,and atoms,and transfer disorganized microscopic potential and kinetic energy,mutually known as the internal energy.In engineering sciences,heat transfer comprises the processes of convection,thermal radiation,and sometimes mass transportation.Typically,more than one of these procedures may happen in a given circumstance.We use the Cattaneo-Christov(CC)heat flux model instead of the Fourier law of heat conduction to discuss the behavior of heat transportation.A mathematical model is presented for the Cattaneo-Christov double diffusion(CCDD)in the flow of a non-Newtonian nanofluid(the Jeffrey fluid)towards a stretched surface.The magnetohydrodynamic(MHD)fluid is considered.The behaviors of heat and mass transportation rates are discussed with the CCDD.These models are based on Fourier’s and Fick’s laws.The convective transportation in nanofluids is discussed,subject to thermophoresis and Brownian diffusions.The nonlinear governing flow expression is first altered into ordinary differential equations via appropriate transformations,and then numerical solutions are obtained through the built-in-shooting method.The impact of sundry flow parameters is discussed on the velocity,the skin friction coefficient,the temperature,and the concentration graphically.It is reported that the velocity of material particles decreases with higher values of the Deborah number and the ratio of the relaxation to retardation time parameter.The temperature distribution enhances when the Brownian motion and thermophoresis parameters increase.The concentration shows contrasting impact versus the Lewis number and the Brownian motion parameter.It is also noticed that the skin friction coefficient decreases when the ratio of the relaxation to retardation time parameter increases. 展开更多
关键词 Cattaneo-Christov double diffusion(CCDD) non-Newtonian fluid model(Jeffrey model) viscous dissipation magnetohydrodynamic(mhd) Brownian diffusion thermophoresis diffusion
下载PDF
不可压MHD系统的零耗散极限中的边界层
6
作者 王术 辛周平 《中国科学:数学》 CSCD 北大核心 2017年第10期1303-1326,共24页
本文研究通常的Dirichlet物理边界条件下带有小而变化的黏性和磁扩散系数的不可压磁流体(MHD)方程组的初边值的极限问题;发现了一类非平凡的初值,对于这类初值能建立其Prandtl型边界层的一致稳定性,并且严格证明了理想的MHD方程组的解和... 本文研究通常的Dirichlet物理边界条件下带有小而变化的黏性和磁扩散系数的不可压磁流体(MHD)方程组的初边值的极限问题;发现了一类非平凡的初值,对于这类初值能建立其Prandtl型边界层的一致稳定性,并且严格证明了理想的MHD方程组的解和Pandtl型边界层矫正子的叠加是黏性扩散不可压MHD方程的解的一致逼近.这里的主要困难是处理和控制由耗散的MHD系统和理想MHD系统边界条件差异产生的Prandtl型的奇异边界层.关键的观察是对于本文研究的初值,其解的速度场和磁场的边界层的主要奇异项存在有抵消现象.这使得我们能基于精细的能量方法来使用这个特殊结构带来的好处,从而克服在研究这类问题中通常不能解决的困难.此外,在黏性系数为固定的正常数情形,对于一般初值,也能建立磁场的扩散边界层的稳定性以及零磁扩散极限中解的一致收敛性. 展开更多
关键词 不可压的黏性扩散mhd方程 理想的不可压mhd方程 Dirichlet边界条件下的边界层问题
原文传递
The Zero Mach Number Limit of the Three-Dimensional Compressible Viscous Magnetohydrodynamic Equations
7
作者 Yeping LI Wen'an YONG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第6期1043-1054,共12页
This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible... This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equa- tions, first the convergence-stability principle is established. Then it is shown that, when the Much number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous mag- netohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Much number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa- tions towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate. 展开更多
关键词 Compressible viscous mhd equation Mach number limit Convergence-stability principle incompressible viscous mhd equation Energy-typeerror estimate
原文传递
有界域上具有部分耗散和磁扩散的二维磁流体方程的全局适定性
8
作者 张明玉 《数学学报(中文版)》 CSCD 北大核心 2021年第1期107-122,共16页
探究了具有部分耗散和磁扩散的二维不可压缩磁流体(MHD)方程的初边值问题.在有界区域上,当系统的各个方向上的耗散系数和磁扩散系数都非负时,我们得到了该模型的强解是整体存在且唯一的.此外,对周期域而言,其解仍是全局适定的.
关键词 不可压缩磁流体 初边值问题 部分耗散 磁扩散 全局适定性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部