We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectl...We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.展开更多
We establish magnetic diffusion vanishing limit of the nonlinear pipe Magnetohy- drodynamic flow by the mathematical validity of the Prandtl boundary layer theory with fixed viscosity. The convergence is verified unde...We establish magnetic diffusion vanishing limit of the nonlinear pipe Magnetohy- drodynamic flow by the mathematical validity of the Prandtl boundary layer theory with fixed viscosity. The convergence is verified under various Sobolev norms, including the L∞(L2) and L∞(H1) norm.展开更多
Thermal conduction which happens in all phases(liquid,solid,and gas)is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding part...Thermal conduction which happens in all phases(liquid,solid,and gas)is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding particles comprise electrons,molecules,and atoms,and transfer disorganized microscopic potential and kinetic energy,mutually known as the internal energy.In engineering sciences,heat transfer comprises the processes of convection,thermal radiation,and sometimes mass transportation.Typically,more than one of these procedures may happen in a given circumstance.We use the Cattaneo-Christov(CC)heat flux model instead of the Fourier law of heat conduction to discuss the behavior of heat transportation.A mathematical model is presented for the Cattaneo-Christov double diffusion(CCDD)in the flow of a non-Newtonian nanofluid(the Jeffrey fluid)towards a stretched surface.The magnetohydrodynamic(MHD)fluid is considered.The behaviors of heat and mass transportation rates are discussed with the CCDD.These models are based on Fourier’s and Fick’s laws.The convective transportation in nanofluids is discussed,subject to thermophoresis and Brownian diffusions.The nonlinear governing flow expression is first altered into ordinary differential equations via appropriate transformations,and then numerical solutions are obtained through the built-in-shooting method.The impact of sundry flow parameters is discussed on the velocity,the skin friction coefficient,the temperature,and the concentration graphically.It is reported that the velocity of material particles decreases with higher values of the Deborah number and the ratio of the relaxation to retardation time parameter.The temperature distribution enhances when the Brownian motion and thermophoresis parameters increase.The concentration shows contrasting impact versus the Lewis number and the Brownian motion parameter.It is also noticed that the skin friction coefficient decreases when the ratio of the relaxation to retardation time parameter increases.展开更多
This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible...This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equa- tions, first the convergence-stability principle is established. Then it is shown that, when the Much number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous mag- netohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Much number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa- tions towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.展开更多
基金supported partially by NSFC(11671193,11971234)supported partially by the China Postdoctoral Science Foundation(2019M650581).
文摘We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.
基金supported by Natural Science fund of Henan Province(162300410084)the Key Research Fund of Henan Province(16A110019)+1 种基金BSFC(1132006)CIT&TCD(20130312)
文摘We establish magnetic diffusion vanishing limit of the nonlinear pipe Magnetohy- drodynamic flow by the mathematical validity of the Prandtl boundary layer theory with fixed viscosity. The convergence is verified under various Sobolev norms, including the L∞(L2) and L∞(H1) norm.
文摘Thermal conduction which happens in all phases(liquid,solid,and gas)is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding particles comprise electrons,molecules,and atoms,and transfer disorganized microscopic potential and kinetic energy,mutually known as the internal energy.In engineering sciences,heat transfer comprises the processes of convection,thermal radiation,and sometimes mass transportation.Typically,more than one of these procedures may happen in a given circumstance.We use the Cattaneo-Christov(CC)heat flux model instead of the Fourier law of heat conduction to discuss the behavior of heat transportation.A mathematical model is presented for the Cattaneo-Christov double diffusion(CCDD)in the flow of a non-Newtonian nanofluid(the Jeffrey fluid)towards a stretched surface.The magnetohydrodynamic(MHD)fluid is considered.The behaviors of heat and mass transportation rates are discussed with the CCDD.These models are based on Fourier’s and Fick’s laws.The convective transportation in nanofluids is discussed,subject to thermophoresis and Brownian diffusions.The nonlinear governing flow expression is first altered into ordinary differential equations via appropriate transformations,and then numerical solutions are obtained through the built-in-shooting method.The impact of sundry flow parameters is discussed on the velocity,the skin friction coefficient,the temperature,and the concentration graphically.It is reported that the velocity of material particles decreases with higher values of the Deborah number and the ratio of the relaxation to retardation time parameter.The temperature distribution enhances when the Brownian motion and thermophoresis parameters increase.The concentration shows contrasting impact versus the Lewis number and the Brownian motion parameter.It is also noticed that the skin friction coefficient decreases when the ratio of the relaxation to retardation time parameter increases.
基金supported by the National Natural Science Foundation of China(No.11171223)the Doctoral Program Foundation of Ministry of Education of China(No.20133127110007)the Innovation Program of Shanghai Municipal Education Commission(No.13ZZ109)
文摘This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equa- tions, first the convergence-stability principle is established. Then it is shown that, when the Much number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous mag- netohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Much number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa- tions towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.