Abstract: Several potential insecticides were synthesized by incorporating chrysanthemic acid and O,O-dialkyl phosphorodithioate through a pyrrolongdine-2,5-dione group. Their structures were determined by elementary ...Abstract: Several potential insecticides were synthesized by incorporating chrysanthemic acid and O,O-dialkyl phosphorodithioate through a pyrrolongdine-2,5-dione group. Their structures were determined by elementary analysis, NMR, IR and MS.展开更多
An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account o...An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account of the micro-force between molecules and macro-force from the viscous shearing effect, as they contribute to the achieve- ment of the slip length. The calculated results are compared with those obtained from the molecular dynamics simulation, showing an excellent agreement. Further, the effect of the shear rate on the slip is investigated. The results can well predict the fluid flow behaviors on a solid substrate, but has to be proved by experiment.展开更多
This paper presents a new hybrid approach that combines Modified Priority List (MPL) with Charged System Search (CSS), termed MPL-CSS, to solve one of the most crucial power system’s operational optimization problems...This paper presents a new hybrid approach that combines Modified Priority List (MPL) with Charged System Search (CSS), termed MPL-CSS, to solve one of the most crucial power system’s operational optimization problems, known as unit commitment (UC) scheduling. The UC scheduling problem is a mixed-integer nonlinear problem, highly-dimensional and extremely constrained. Existing meta-heuristic UC solution methods have the problems of stopping at a local optimum and slow convergence when applied to large-scale, heavily-constrained UC applications. In the first step of the proposed method, initial hourly optimum solutions of UC are obtained by Modified Priority List (MPL);however, the obtained UC solution may still be possible to be further improved. Therefore, in the second step, the CSS is utilized to achieve higher quality solutions. The UC is formulated as mixed integer linear programming to ensure the tractability of the results. The proposed method is successfully applied to a popular test system up to 100 units generators for both 24-hr and 168-hr system. Computational results show that both solution cost and execution time are superior to those of published methods.展开更多
A series of succinimido-organophosphate analogueswas synthesized with maleic anhydride as starting material viamaleimide and its analogues as intermediates and characterized by IR,1HNMR and elementary analysis.
Three novel polymers incorporating Schiff bases,derived from condensation reactions of poly(acrylamide) with 5- chloro-2-hydroxybenzaldehyde,5-bromo-2-hydroxybenzaldehyde and 5-methyl-2-hydroxybenzaldehyde,have been s...Three novel polymers incorporating Schiff bases,derived from condensation reactions of poly(acrylamide) with 5- chloro-2-hydroxybenzaldehyde,5-bromo-2-hydroxybenzaldehyde and 5-methyl-2-hydroxybenzaldehyde,have been synthesized,and their Cu(Ⅱ) and Ni(Ⅱ) complexes have been prepared.The ~1H-NMR signals of the—CH=N—and—NH_2 groups have been utilized to determine the relative abundances of Schiff base and acrylamide groups in the polymers containing Schiff bases.Poly(acrylamide) incorporating Schiff bases and ...展开更多
A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an S...A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.展开更多
Concentration of copper and zinc in isolated Suillus bovinus mycelia, used nutrient solution and 0.5 mol/L EDTA mycelia washing solution were measured to investigate the distribution of heavy metals in mycelia growth ...Concentration of copper and zinc in isolated Suillus bovinus mycelia, used nutrient solution and 0.5 mol/L EDTA mycelia washing solution were measured to investigate the distribution of heavy metals in mycelia growth in excess copper or zinc nutrient solution. Treated with zinc, most of added zinc maintained in used solution, and 9.8%/14.6% was in/on mycelia in treatment, and in treatment 2 was 3.9%/8.0% in/on mycelia. In the copper applications, copper stimulated in more than on mycelia, i.e., 25.9%/4.5% in/on mycelia in treatment, and 7%/18.8% in/on mycelia while most of copper retained in used nutrient solution. Certain amount of copper or zinc uptake by mycelia led to pronounced influence on glycolysis and nitrogen incorporating process of Suillus bovinus, while the tested enzymes kept constant in treatment. In crude extracts of copper treatment 2 mycelia, activities of HK, PFK and GS were inhibited and decrease to 63%, 48% and 38% and GIDH increased by 68% of the control, respectively. The behaviors of these tested enzymes toward zinc corresponded in general with that towards copper. The potential protection of Suillus bovinus for its host plant under excess copper or zinc threaten was discussed.展开更多
Developing highly active and cost-effective electrocatalysts for enhancing the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a significant challenge for overall water splitting.Sulfur-incorporat...Developing highly active and cost-effective electrocatalysts for enhancing the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a significant challenge for overall water splitting.Sulfur-incorporated nickel iron(oxy)hydroxide(S-NiFeOOH)nanosheets were directly grown on commercial nickel foam using a galvanic corrosion method and a hydrothermal method.The incorporation of sulfur into NiFeOOH enhanced the catalytic activity for the HER and OER in 1 M KOH electrolyte.The enhanced catalytic activity is attributed to the change in the local structure and chemical states due to the incorporation of sulfur.High performance for overall water splitting was achieved with an alkaline water electrolyzer.This was realized by employing S-NiFeOOH as a bifunctional electrocatalyst,thereby outperforming a water electrolyzer that requires the usage of precious metal electrocatalysts(i.e.,Pt/C as the HER electrocatalyst and IrO_(2) as the OER electrocatalyst).Moreover,when driven by a commercial silicon solar cell,an alkaline water electrolyzer that uses S-NiFeOOH as a bifunctional electrocatalyst generated hydrogen under natural illumination.This study shows that S-NiFeOOH is a promising candidate for a large-scale industrial implementation of hydrogen production for overall water splitting because of its low cost,high activity,and durability.In addition,the solar-driven water electrolyzer using S-NiFeOOH as a bifunctional electrocatalyst affords the opportunity for developing effective and feasible solar power systems in the future.展开更多
Heavy-fermion superconductors (HFSCs) are regarded as outside the purview of BCS theory because it is usually constrained by the inequality , where EF, μ, kB, and θD are, respectively, the Fermi energy, chemical pot...Heavy-fermion superconductors (HFSCs) are regarded as outside the purview of BCS theory because it is usually constrained by the inequality , where EF, μ, kB, and θD are, respectively, the Fermi energy, chemical potential, Boltzmann constant, and the Debye temperature. We show that this restriction can be removed by incorporating μ into the equations for Tc and the gap Δ0 at T = 0. Further, when μ kBθD, we curtail the limits of the equations for Tc and Δ0 to avoid complex-valued solutions. The resulting equations are applied to a prominent member of the HFSC family, i.e., CeCoIn5, by appealing to ideas due to Born and Karmann, Suhl et al., and Bianconi et al. Since the equations now contain an additional variable μ, we find that 1) the Tc of the SC can be accounted for by a multitude of values of the (μ, λ) pair, λ being the interaction parameter;2) the λ vs. μ plot has a dome-like structure when μ kBθD;3) the (μ, λ) values obtained in 2) lead to reasonable results for the range of each of the following variables: Δ0, s, and n, where s is the ratio of the mass of a conduction electron and the free electron mass and n is the number density of charge carriers in the SC.展开更多
As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS...As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.展开更多
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ...Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.展开更多
We demonstrate a broad bandwidth multiwavelength laser based on a bidirectional Lyot filter and a semiconductor optical amplifier with a mechanism of intensity-dependent loss as the flatness agent. A wide bandwidth of...We demonstrate a broad bandwidth multiwavelength laser based on a bidirectional Lyot filter and a semiconductor optical amplifier with a mechanism of intensity-dependent loss as the flatness agent. A wide bandwidth of a multiwavelength spectrum of 32.9 nm within a 5 dB uniformity is obtained under optimized polarization param- eters. For this case, the number of generated lasing lines is 329 with a fixed wavelength separation of 0.1 nm. The power stability of this multiwavelength laser is less than 1.35 dB within 200 min time frame. This shows that the bidirectional Lyot filter provides an alternative option for multiwavelength generation in laser systems.展开更多
A polarization-maintained coupled optoelectronic oscillator(COEO) with its performance significantly improved by a short-length unpumped erbium-doped fiber(EDF) is reported and experimentally investigated.A 10 GHz...A polarization-maintained coupled optoelectronic oscillator(COEO) with its performance significantly improved by a short-length unpumped erbium-doped fiber(EDF) is reported and experimentally investigated.A 10 GHz optical pulse train with a supermode suppression ratio of 61.8 d B and a 10 GHz radio frequency signal with a sidemode suppression ratio of 94 d B and a phase noise of-121.9 d Bc∕Hz at 10 k Hz offset are simultaneously generated. Thanks to saturable absorption of the 1 m unpumped EDF, which introduces relatively large cavity loss to the undesired modes and noise, the supermode suppression ratio and the phase noise are improved by 9.4 and 7.9 d B, respectively.展开更多
A tunable frequency-multiplying optoelectronic oscillator(OEO) based on a dual-parallel Mach-Zehnder modulator(DPMZM) is proposed and experimentally demonstrated. In the proposed system, the tunable fundamental microw...A tunable frequency-multiplying optoelectronic oscillator(OEO) based on a dual-parallel Mach-Zehnder modulator(DPMZM) is proposed and experimentally demonstrated. In the proposed system, the tunable fundamental microware signal is generated by a tunable optoelectronic oscillator incorporating a phase-shifted fiber Bragg grating(PS-FBG). By adjusting the DC bias of the DPMZM, the frequency-doubled microwave signal with a tunable frequency range from 11 GHz to 20 GHz and the frequency-quadrupled microwave signal with a tunable frequency range from 22.5 GHz to 26 GHz are generated. The phase noises of the fundamental, frequency-doubled and frequency-quadrupled signals at 10 k Hz offset frequency are-105.9 d Bc/Hz,-103.3 d Bc/Hz and-86.2 d Bc/Hz, respectively.展开更多
Dear Editor,Three dimensional(3D)bioprinted extracellular matrix(ECM)can be used to provide both biochemical and biophysical cues to direct mesenchymal stem cells(MSCs)differentiation,and then differentiated cells wer...Dear Editor,Three dimensional(3D)bioprinted extracellular matrix(ECM)can be used to provide both biochemical and biophysical cues to direct mesenchymal stem cells(MSCs)differentiation,and then differentiated cells were isolated for implantation in vivo using surgical procedures.However,the reduced cell activity after cell isolation from 3D constructs and low cell retention in injured sites limit its application[1].Methacrylated gelatin(GelMA)hydrogel has the advantage of fast crosslinking,which could resemble complex architectures of tissue construct in vivo[2].Here,we adopted a noninvasive bioprinting procedure to imitate the regenerative microenvironment that could simultaneously direct the sweat gland(SG)and vascular differentiation from MSCs and ultimately promote the replacement of glandular tissue in situ(Fig.1a).展开更多
Developing highly active and selective catalysts for the hydrogenation of nitroarenes,an environmentally benign process to produce industrially important aniline intermediates,is highly desirable but very challenging....Developing highly active and selective catalysts for the hydrogenation of nitroarenes,an environmentally benign process to produce industrially important aniline intermediates,is highly desirable but very challenging.Pd catalysts are generally recognized as active but nonselective catalysts for this important reaction.Here,we report an effective strategy to greatly improve the selectivity of Pd catalysts based on the reactive metal–support interaction.展开更多
The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Nort...The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China.展开更多
-We describe a simple method to generate wavelength-tunable pulses by using a semiconductor optical amplifier (SOA) as an intensity modulator and a gain medium. Wavelength tunable pulses at a repetition rate of 4.8 GH...-We describe a simple method to generate wavelength-tunable pulses by using a semiconductor optical amplifier (SOA) as an intensity modulator and a gain medium. Wavelength tunable pulses at a repetition rate of 4.8 GHz have been generated.展开更多
based on optimal design on the core element of the sensor,a wireless and passive surface acoustic wave(SAW)temperature sensor integrated with ID Tag was presented.A reflective delay line,which consists of a transduc...based on optimal design on the core element of the sensor,a wireless and passive surface acoustic wave(SAW)temperature sensor integrated with ID Tag was presented.A reflective delay line,which consists of a transducer and eight reflectors on YZ LiNbO3 substrate.Was fabricated as the sensor element,in which,three reflectors were used for temperature sensing,and the other five were for the ID Tag using phase encoding.Single phase unidirectional transducers(SPUDTs)and shorted grating were used to structure the sAW device,leading to excellent signal to noise ratio(SNR).The performance of the SAW device was simulated by the coupling of modes(COM)prior to fabrication.Using the network analyzer,the response in time domain of the fabricated 434 MHz SAW sensor was characterized,the measured S11 agrees well with the simulated one,sharp reflection peaks,high signal/noise,and low spurious noise between the reflection peaks were observed.Using the radar system based on FSCW as the reader unit.the developed SAW temperature sensors were evaluated wirelessly.Excellent1 inearity and good resolution of士1℃ were observed.展开更多
By use of geostrophic momentum approximation,the analytical expressions of the wind distribution within the planetary boundary layer and the vertical velocity at the top of the boundary layer are obtained when the dis...By use of geostrophic momentum approximation,the analytical expressions of the wind distribution within the planetary boundary layer and the vertical velocity at the top of the boundary layer are obtained when the distribution of eddy transfer coefficient k is divided into three sections:k_1z(z_0≤z<h_1),k_2(h_1≤z<h_2), and k_3(h_2≤z).The results are in agreement with the observations.In particular,the wind profile in the surface layer(z_0≤z<h_1)coincides with the logarithmic distribution.The maximum angle between winds near the surface and at the bottom of the free atmosphere is only about 30°.This work improves the work of Wu and Blumen(1982)who introduced the geostrophic momentum approximation to the boundary layer.The solutions in barotropic and neutral conditions have been also extended to the baroclinic and stratified atmosphere.展开更多
文摘Abstract: Several potential insecticides were synthesized by incorporating chrysanthemic acid and O,O-dialkyl phosphorodithioate through a pyrrolongdine-2,5-dione group. Their structures were determined by elementary analysis, NMR, IR and MS.
基金Supported by the National Natural Science Foundation of China under Grant No 51305033the Ministry of National Defense of China under Grant No 9140C340506
文摘An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account of the micro-force between molecules and macro-force from the viscous shearing effect, as they contribute to the achieve- ment of the slip length. The calculated results are compared with those obtained from the molecular dynamics simulation, showing an excellent agreement. Further, the effect of the shear rate on the slip is investigated. The results can well predict the fluid flow behaviors on a solid substrate, but has to be proved by experiment.
文摘This paper presents a new hybrid approach that combines Modified Priority List (MPL) with Charged System Search (CSS), termed MPL-CSS, to solve one of the most crucial power system’s operational optimization problems, known as unit commitment (UC) scheduling. The UC scheduling problem is a mixed-integer nonlinear problem, highly-dimensional and extremely constrained. Existing meta-heuristic UC solution methods have the problems of stopping at a local optimum and slow convergence when applied to large-scale, heavily-constrained UC applications. In the first step of the proposed method, initial hourly optimum solutions of UC are obtained by Modified Priority List (MPL);however, the obtained UC solution may still be possible to be further improved. Therefore, in the second step, the CSS is utilized to achieve higher quality solutions. The UC is formulated as mixed integer linear programming to ensure the tractability of the results. The proposed method is successfully applied to a popular test system up to 100 units generators for both 24-hr and 168-hr system. Computational results show that both solution cost and execution time are superior to those of published methods.
文摘A series of succinimido-organophosphate analogueswas synthesized with maleic anhydride as starting material viamaleimide and its analogues as intermediates and characterized by IR,1HNMR and elementary analysis.
基金supported by the Gazi University Research Fund(NoFEF05/2006-22)TUBITAK(No106T734(TBAG/HD-232))
文摘Three novel polymers incorporating Schiff bases,derived from condensation reactions of poly(acrylamide) with 5- chloro-2-hydroxybenzaldehyde,5-bromo-2-hydroxybenzaldehyde and 5-methyl-2-hydroxybenzaldehyde,have been synthesized,and their Cu(Ⅱ) and Ni(Ⅱ) complexes have been prepared.The ~1H-NMR signals of the—CH=N—and—NH_2 groups have been utilized to determine the relative abundances of Schiff base and acrylamide groups in the polymers containing Schiff bases.Poly(acrylamide) incorporating Schiff bases and ...
基金Supported by the National Natural Science Foundation of China under Grant No 11104314
文摘A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.
文摘Concentration of copper and zinc in isolated Suillus bovinus mycelia, used nutrient solution and 0.5 mol/L EDTA mycelia washing solution were measured to investigate the distribution of heavy metals in mycelia growth in excess copper or zinc nutrient solution. Treated with zinc, most of added zinc maintained in used solution, and 9.8%/14.6% was in/on mycelia in treatment, and in treatment 2 was 3.9%/8.0% in/on mycelia. In the copper applications, copper stimulated in more than on mycelia, i.e., 25.9%/4.5% in/on mycelia in treatment, and 7%/18.8% in/on mycelia while most of copper retained in used nutrient solution. Certain amount of copper or zinc uptake by mycelia led to pronounced influence on glycolysis and nitrogen incorporating process of Suillus bovinus, while the tested enzymes kept constant in treatment. In crude extracts of copper treatment 2 mycelia, activities of HK, PFK and GS were inhibited and decrease to 63%, 48% and 38% and GIDH increased by 68% of the control, respectively. The behaviors of these tested enzymes toward zinc corresponded in general with that towards copper. The potential protection of Suillus bovinus for its host plant under excess copper or zinc threaten was discussed.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.NRF-2016R1D1A3B04935101).
文摘Developing highly active and cost-effective electrocatalysts for enhancing the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a significant challenge for overall water splitting.Sulfur-incorporated nickel iron(oxy)hydroxide(S-NiFeOOH)nanosheets were directly grown on commercial nickel foam using a galvanic corrosion method and a hydrothermal method.The incorporation of sulfur into NiFeOOH enhanced the catalytic activity for the HER and OER in 1 M KOH electrolyte.The enhanced catalytic activity is attributed to the change in the local structure and chemical states due to the incorporation of sulfur.High performance for overall water splitting was achieved with an alkaline water electrolyzer.This was realized by employing S-NiFeOOH as a bifunctional electrocatalyst,thereby outperforming a water electrolyzer that requires the usage of precious metal electrocatalysts(i.e.,Pt/C as the HER electrocatalyst and IrO_(2) as the OER electrocatalyst).Moreover,when driven by a commercial silicon solar cell,an alkaline water electrolyzer that uses S-NiFeOOH as a bifunctional electrocatalyst generated hydrogen under natural illumination.This study shows that S-NiFeOOH is a promising candidate for a large-scale industrial implementation of hydrogen production for overall water splitting because of its low cost,high activity,and durability.In addition,the solar-driven water electrolyzer using S-NiFeOOH as a bifunctional electrocatalyst affords the opportunity for developing effective and feasible solar power systems in the future.
文摘Heavy-fermion superconductors (HFSCs) are regarded as outside the purview of BCS theory because it is usually constrained by the inequality , where EF, μ, kB, and θD are, respectively, the Fermi energy, chemical potential, Boltzmann constant, and the Debye temperature. We show that this restriction can be removed by incorporating μ into the equations for Tc and the gap Δ0 at T = 0. Further, when μ kBθD, we curtail the limits of the equations for Tc and Δ0 to avoid complex-valued solutions. The resulting equations are applied to a prominent member of the HFSC family, i.e., CeCoIn5, by appealing to ideas due to Born and Karmann, Suhl et al., and Bianconi et al. Since the equations now contain an additional variable μ, we find that 1) the Tc of the SC can be accounted for by a multitude of values of the (μ, λ) pair, λ being the interaction parameter;2) the λ vs. μ plot has a dome-like structure when μ kBθD;3) the (μ, λ) values obtained in 2) lead to reasonable results for the range of each of the following variables: Δ0, s, and n, where s is the ratio of the mass of a conduction electron and the free electron mass and n is the number density of charge carriers in the SC.
文摘As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.
基金supported by the National Natural Science Foundation of China(52363028,21965005)the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
文摘Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.
文摘We demonstrate a broad bandwidth multiwavelength laser based on a bidirectional Lyot filter and a semiconductor optical amplifier with a mechanism of intensity-dependent loss as the flatness agent. A wide bandwidth of a multiwavelength spectrum of 32.9 nm within a 5 dB uniformity is obtained under optimized polarization param- eters. For this case, the number of generated lasing lines is 329 with a fixed wavelength separation of 0.1 nm. The power stability of this multiwavelength laser is less than 1.35 dB within 200 min time frame. This shows that the bidirectional Lyot filter provides an alternative option for multiwavelength generation in laser systems.
基金supported by the National Natural Science Foundation of China(No.61422108)the Natural Science Foundation of Jiangsu Province(No.BK20160082)+1 种基金the Jiangsu Provincial Program for High-level Talents in Six Areas(No.DZXX-030)the Fundamental Research Funds for Central Universities(Nos.NE2017002 and NS2016037)
文摘A polarization-maintained coupled optoelectronic oscillator(COEO) with its performance significantly improved by a short-length unpumped erbium-doped fiber(EDF) is reported and experimentally investigated.A 10 GHz optical pulse train with a supermode suppression ratio of 61.8 d B and a 10 GHz radio frequency signal with a sidemode suppression ratio of 94 d B and a phase noise of-121.9 d Bc∕Hz at 10 k Hz offset are simultaneously generated. Thanks to saturable absorption of the 1 m unpumped EDF, which introduces relatively large cavity loss to the undesired modes and noise, the supermode suppression ratio and the phase noise are improved by 9.4 and 7.9 d B, respectively.
基金supported by the National Key R&D Program of China (No.2018YFB1801003)the National Natural Science Foundation of China (Nos.61525501 and 61827817)+1 种基金the Beijing Natural Science Foundation (No.4192022)the Project of Shandong Province Higher Educational Science and Technology Program (No.J17KA089)。
文摘A tunable frequency-multiplying optoelectronic oscillator(OEO) based on a dual-parallel Mach-Zehnder modulator(DPMZM) is proposed and experimentally demonstrated. In the proposed system, the tunable fundamental microware signal is generated by a tunable optoelectronic oscillator incorporating a phase-shifted fiber Bragg grating(PS-FBG). By adjusting the DC bias of the DPMZM, the frequency-doubled microwave signal with a tunable frequency range from 11 GHz to 20 GHz and the frequency-quadrupled microwave signal with a tunable frequency range from 22.5 GHz to 26 GHz are generated. The phase noises of the fundamental, frequency-doubled and frequency-quadrupled signals at 10 k Hz offset frequency are-105.9 d Bc/Hz,-103.3 d Bc/Hz and-86.2 d Bc/Hz, respectively.
基金supported by the Science Fund for National Defense Distinguished Young Scholars(2022-JCJQ-ZQ-016)the Key Basic Research Projects of the Foundation Strengthening Plan(2022-JCJQZD-096-00)+2 种基金the National Key Research and Development Program of China(2022YFA1104604)the National Natural Science Foundation of China(32000969)the Key Support Program for Growth Factor Research(SZYZ-TR-03).
文摘Dear Editor,Three dimensional(3D)bioprinted extracellular matrix(ECM)can be used to provide both biochemical and biophysical cues to direct mesenchymal stem cells(MSCs)differentiation,and then differentiated cells were isolated for implantation in vivo using surgical procedures.However,the reduced cell activity after cell isolation from 3D constructs and low cell retention in injured sites limit its application[1].Methacrylated gelatin(GelMA)hydrogel has the advantage of fast crosslinking,which could resemble complex architectures of tissue construct in vivo[2].Here,we adopted a noninvasive bioprinting procedure to imitate the regenerative microenvironment that could simultaneously direct the sweat gland(SG)and vascular differentiation from MSCs and ultimately promote the replacement of glandular tissue in situ(Fig.1a).
基金funding support from the National Natural Science Foundation of China(grant nos.U1932213,21431006,51732011,and 21761132008)the Foundation for Innovative Research Groups of the National Natural Sci-ence Foundationof China(grant no.21521001)+4 种基金and the Key Research Program of Frontier Sciences,CAS(grant no.QYZDJ-SSW-SLH036).H.W.L.is thankful for the support by the National Key Research and Development Program of China(no.2018YFA0702001)and the Fundamental Re-search Funds for the Central Universities(no.WK206-0190103).Z.Y.W.acknowledges the funding support from the National Natural Science Foundation of China(grant no.21703229)C.Q.H acknowledges the funding support from the Zhejiang Provincial Natural Science Foundation of Chi-na(grant no.LQ20B030008).W.X.L acknowledges the funding support from the National Natural Science Foun-dation of China(grant nos.91645202 and 91945302)the Key Research Programof Frontier Sciences,CAS(grantno.QYZDJ-SSW-SLH054)and the National Key Research and Development Program of China(grant nos.2018YFA-0208603 and 2017YFB0602205)partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
文摘Developing highly active and selective catalysts for the hydrogenation of nitroarenes,an environmentally benign process to produce industrially important aniline intermediates,is highly desirable but very challenging.Pd catalysts are generally recognized as active but nonselective catalysts for this important reaction.Here,we report an effective strategy to greatly improve the selectivity of Pd catalysts based on the reactive metal–support interaction.
基金This work was supported by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(52179046).
文摘The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China.
文摘-We describe a simple method to generate wavelength-tunable pulses by using a semiconductor optical amplifier (SOA) as an intensity modulator and a gain medium. Wavelength tunable pulses at a repetition rate of 4.8 GHz have been generated.
基金supported by the National Nature Science Foundation of China(11074268,10834010)
文摘based on optimal design on the core element of the sensor,a wireless and passive surface acoustic wave(SAW)temperature sensor integrated with ID Tag was presented.A reflective delay line,which consists of a transducer and eight reflectors on YZ LiNbO3 substrate.Was fabricated as the sensor element,in which,three reflectors were used for temperature sensing,and the other five were for the ID Tag using phase encoding.Single phase unidirectional transducers(SPUDTs)and shorted grating were used to structure the sAW device,leading to excellent signal to noise ratio(SNR).The performance of the SAW device was simulated by the coupling of modes(COM)prior to fabrication.Using the network analyzer,the response in time domain of the fabricated 434 MHz SAW sensor was characterized,the measured S11 agrees well with the simulated one,sharp reflection peaks,high signal/noise,and low spurious noise between the reflection peaks were observed.Using the radar system based on FSCW as the reader unit.the developed SAW temperature sensors were evaluated wirelessly.Excellent1 inearity and good resolution of士1℃ were observed.
文摘By use of geostrophic momentum approximation,the analytical expressions of the wind distribution within the planetary boundary layer and the vertical velocity at the top of the boundary layer are obtained when the distribution of eddy transfer coefficient k is divided into three sections:k_1z(z_0≤z<h_1),k_2(h_1≤z<h_2), and k_3(h_2≤z).The results are in agreement with the observations.In particular,the wind profile in the surface layer(z_0≤z<h_1)coincides with the logarithmic distribution.The maximum angle between winds near the surface and at the bottom of the free atmosphere is only about 30°.This work improves the work of Wu and Blumen(1982)who introduced the geostrophic momentum approximation to the boundary layer.The solutions in barotropic and neutral conditions have been also extended to the baroclinic and stratified atmosphere.