Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa...Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.展开更多
In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and ...In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation...Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.展开更多
Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are n...Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.展开更多
Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in...Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in the alternate cotton-peanut intercropping,specifically focusing on its yield benefits,environmental impacts,and the underlying mechanisms.In addition,we advocate for future investigations into the selection or development of appropriate crop varieties and agricultural equipment,pest management options,and the mechanisms of root-canopy interactions.This review is intended to provide a valuable reference for understanding and adopting an alternate intercropping system for sustainable cotton production.展开更多
China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nut...China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs.展开更多
In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing a...In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing and strategies in mitigating Cd-stressed rice,the precise mechanisms underlying the health restoration of Cd-toxic rice and the assurance of grain safety remain elusive.This study explored Cd translocation and detoxification in the shoots of rice regulated by various Si fertilization regimes:Si(T)(all Si added before transplanting),Si(J)(all Si added at jointing),and Si(TJ)(half Si added both before transplanting and at jointing).The findings revealed that the regime of Si(TJ)was more beneficial to rice health and grain safety than Si(T)and Si(J).The osmotic regulators such as proline,soluble sugars,and soluble proteins were significantly boosted by Si(TJ)compared to other Si treatments,and which enhanced membrane integrity,balanced intracellular pH,and increased Cd tolerance of rice.Furthermore,Si(TJ)was more effective than Si(T)and Si(J)on the Cd sequestration in the cell wall,Cd bio-passivation,and the down-regulated expression of the Cd transport genes.The concentrations of Cd in the xylem and phloem treated with Si(TJ)were reduced significantly.Additionally,Si(TJ)facilitated much more Cd bound with the outer layer proteins of grains,and promoted Cd chelation and complexation by phytic acid,phenolics,and flavonoids.Overall,Si(TJ)outperformed Si(T)and Si(J)in harmonizing the phycological processes,inhibiting Cd translocation,and enhancing Cd detoxification in rice plant.Thereby the split Si application strategy offers potential for reducing Cd toxicity in rice grain.展开更多
[Objectives]Integrated land productivity can reflect the comprehensive utilization of land and the overall output level,which is the most basic and commonly used indicator in assessing land use efficiency.This thesis ...[Objectives]Integrated land productivity can reflect the comprehensive utilization of land and the overall output level,which is the most basic and commonly used indicator in assessing land use efficiency.This thesis aims to analyze the spatial and temporal changes of integrated land productivity in Chongqing from 1997 to 2023 in order to assess its land use efficiency.[Methods]This study measured the integrated land productivity of Chongqing Municipality,the only municipality directly under the central government in the western part of China,over the past 26 years(1997-2023)through relevant surveys and statistical data,and analyzed in depth the integrated land productivity of the 38 districts and counties under the jurisdiction of Chongqing,as well as the functional sub-districts of the"one district and two clusters"and the"one district and two clusters"in Chongqing.It also analyzes the characteristics of spatial and temporal differences in land productivity in 38 districts and counties under the jurisdiction of Chongqing and"one district and two clusters".[Results]The results of the study show that over the past 26 years,the integrated land productivity of Chongqing has shown an annual growth trend,and the integrated land productivity of the 38 districts and counties and the functional subregions of"one district and two clusters"has also increased significantly,but the average annual growth rate of the integrated land productivity varies among different regions.From the perspective of spatial differences,there are significant differences in land productivity among the 38 districts and counties of Chongqing and the functional subregions of"one district and two clusters",which are mainly due to the different natural conditions,economic development levels and functional positioning of each region.[Conclusions]Based on the results of the study and the actual situation of Chongqing,this paper puts forward the leading measures to improve the integrated land productivity,with a view to providing a reference basis for Chongqing to improve the efficiency of land use and promote the sustainable use of land resources.展开更多
To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around t...To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius,that is,the formation has different permeability characteristics with the perforation depth as the dividing line.Generally,the permeability is measured by the permeability tester,but this approach has a high workload and limited application.In this paper,according to the reservoir characteristics of perforated horizontal wells,the reservoir is divided into two areas:the original reservoir area and the near-well high permeability reservoir area.Based on the theory of seepage mechanics and the formula of open hole productivity,the permeability calculation formula of near-well high permeability reservoir area with perforation parameters is deduced.According to the principle of seepage continuity,the seepage is regarded as the synthesis of two directions:the horizontal plane elliptic seepage field and the vertical plane radial seepage field,and the oil well productivity prediction model of the perforated horizontal well is established by partition.The model comparison demonstrates that the model is reasonable and feasible.To calculate and analyze the effect of oil well production and the law of influencing factors,actual production data of the oilfield are substituted into the oil well productivity formula.It can effectively guide the technical process design and effect prediction of perforated horizontal wells.展开更多
The sustenance of humanity is contingent upon the production of food.The foundation of this production is agriculture,which in turn is dependent upon the cultivation of the land.As a fundamental element of agricultura...The sustenance of humanity is contingent upon the production of food.The foundation of this production is agriculture,which in turn is dependent upon the cultivation of the land.As a fundamental element of agricultural advancement,the rational development and utilization of land play a pivotal role in the process of rural revitalization.Agricultural land productivity serves as a principal indicator of the efficacy of land utilization and the extent of agricultural advancement.Nevertheless,there is a paucity of research examining the productivity of agricultural land,particularly a lack of specialized research on large agricultural provinces.In light of the aforementioned considerations,this paper presents a comprehensive examination of agricultural land productivity and its regional variations in Heilongjiang Province in 2022,with the aid of pertinent statistical data.The findings of the analysis indicate that among the prefecture-level cities,Daqing and Suihua exhibit the highest levels of agricultural land productivity.Additionally,Zhaodong City,Zhaozhou,Qinggang,Wangkui,and Lanxi counties exhibit high levels of agricultural land productivity within their respective prefecture-level cities.There are notable disparities in agricultural land productivity across various regions,including Yichun,Heihe,Harbin,Daqing,Hegang,and Suihua.In contrast,other regions demonstrate a more balanced spatial distribution.In order to facilitate the prosperous development of the agricultural industry in Heilongjiang Province,it is essential to optimize the spatial planning of the land,to investigate the potential for agricultural development in each region,to establish effective collaboration between resources and industries,and to create a development synergy that will collectively advance rural revitalization.展开更多
Maintaining moderate economic growth targets(EGTs)is the key for local governments to effectively implement the“carbon peak and carbon neutrality”goals under the refreshed development pattern.Utilizing panel data of...Maintaining moderate economic growth targets(EGTs)is the key for local governments to effectively implement the“carbon peak and carbon neutrality”goals under the refreshed development pattern.Utilizing panel data of 276 prefecture-level cities in China's Mainland from 2010 to 2020,and employing methods such as intermediary and threshold models,this study empirically analyzes the internal mechanism of EGT’s impact on urban carbon productivity(UCP).Our findings demonstrate that:①The overall EGT during the analyzed period is not conducive to improving UCP.This conclusion remains valid after a series of robustness tests.This effect is more pronounced in the central region and resource-based cities than in the east-west region and non resource-based cities.②EGT not only directly suppresses UCP but also exerts indirect negative impacts on UCP from three aspects:delaying the digital economy(DE),constraining financial expansion(FE),and hindering green technology innovation(GTI).This negative indirect effect is similar to or even surpasses the direct effect,suggesting that the internal relationship between EGT and“dual-carbon”goals should be re-evaluated from a new compound perspective.③EGT not only has a simple linear impact on UCP but also significantly exhibits a dynamic evolution pattern in inverted“U”shape.That is,as EGT continuously upgrades,a nonlinear impact on UCP emerges in the form of“promoting first,suppressing later”.This indicates that surpassing the“degree”limit for EGT will be detrimental to the improvement of UCP.This study broadens the scope of carbon productivity analysis by introducing a new perspective centered on EGT.The insights gleaned from this research offer valuable guidance for local governments to effectively manage economic growth expectations and promote the synchronized achievement of dual-carbon objectives.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of c...This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.展开更多
An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis sugges...An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.展开更多
Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surfa...Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.展开更多
The construction industry, known for its low productivity, is increasingly utilising software and mobile apps to enhance efficiency. However, more comprehensive research is needed to understand the effectiveness of th...The construction industry, known for its low productivity, is increasingly utilising software and mobile apps to enhance efficiency. However, more comprehensive research is needed to understand the effectiveness of these technology applications. The PRISMA principles utilised a scoping review methodology to ascertain pertinent studies and extract significant findings. From 2013 onwards, articles containing data on mobile applications or software designed to enhance productivity in the construction sector were obtained from multiple databases, including Emerald Insight, Science Direct, IEEE Xplore, and Google Scholar. After evaluating 2604 articles, 30 were determined to be pertinent to the study and were subsequently analysed for the review. The review identified five key themes: effectiveness, benefits, successful implementation examples, obstacles and limitations, and a comprehensive list of software and mobile apps. In addition, 71 software and mobile apps have shown potentially how these technologies can improve communication, collaboration, project management, real-time collaboration, document management, and on-the-go project information and estimating processes in the construction industry, increasing efficiency and productivity. The findings highlight the potential of these technologies such as Automation, Radio-Frequency Identification (RFID), Building Information Modeling (BIM), Augmented Reality (AR), Virtual Reality (VR), and Internet of Things (IoT) to improve efficiency and communication in the construction industry. Despite challenges such as cost, lack of awareness, resistance to change, compatibility concerns, human resources, technological and security concerns and licensing issues, the study identifies specific mobile applications and software with the potential to enhance efficiency significantly, improve productivity and streamline workflows. The broader societal impacts of construction software and mobile app development include increased efficiency, job creation, and sustainability.展开更多
The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the ...The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the construction industry to a higher level by scientifically and accurately measuring the total factor productivity of the construction industry and deeply analyzing the influencing factors behind it.Based on a comprehensive consideration of research methods and influencing factors,this paper systematically reviews the existing relevant literature on total factor productivity in the construction industry,aiming to reveal the current research development trend in this field and point out potential problems.This effort aims to provide a solid theoretical foundation and valuable reference for further in-depth research,and jointly promote the continuous progress and development of total factor productivity research in the construction industry.展开更多
With the increasing integration of technology in modern workplaces, concerns have emerged regarding the addictive nature of technology and its potential consequences on employee productivity. This research aims to inv...With the increasing integration of technology in modern workplaces, concerns have emerged regarding the addictive nature of technology and its potential consequences on employee productivity. This research aims to investigate the impact of technological addiction on workplace productivity within the public sector of Zimbabwe. The study employed a mixed-methods approach, combining surveys, interviews, and a case study analysis, to examine the prevalence and effects of technological addiction in affecting productivity in the public sector of Zimbabwe. The findings indicate that excessive use of social media, and other digital distractions is a growing concern in the public sector, leading to decreased focus, missed deadlines, and strained teamwork. Factors such as unrestricted internet access, lack of clear usage policies, and inadequate self-regulation contribute to the problem The research outcomes also highlight the need for awareness and interventions to address social media addiction in the workplace, promote healthier technology use, and uphold productivity and employee well-being.展开更多
Objective: The paper aims to analyze the dynamic characteristics of litter production and nutrient return of the forest ecosystems in subtropical areas, and provide a theoretical basis for the nutrient cycling study i...Objective: The paper aims to analyze the dynamic characteristics of litter production and nutrient return of the forest ecosystems in subtropical areas, and provide a theoretical basis for the nutrient cycling study in southwest Hubei Province and carbon sink function of the whole forest ecosystem. Methods: Three typical forest stands (Chinese fir plantation, Cryptomeria fortunei plantation and evergreen and deciduous broad-leaved mixed forest) in Golden Mountain Forest Farm in southwest Hubei Province were investigated and monitored continuously for the litter types and productivity and nutrient return. Results: The annual litter productivity of the three forest stands ranged from 161.77 to 396.26 kg·hm<sup>-2</sup>;Litters of branches, leaves and reproductive organs accounted for 14.14% - 20.85%, 33.26% - 78.33%, 7.52% - 42.18% of the total, respectively;The litter productivity and total litter productivity of each composition in the three forest stands show unimodal or bimodal changes over months, and the total litter productivity reached the highest value in January, April and October respectively. For different nutrient contents of the three forest stands, the common feature is C > N. The order of nutrient return amount from greatest to least is evergreen and deciduous broad-leaved mixed forest, Cryptomeria fortunei plantation and Chinese fir plantation. For different nutrient return amounts, the common feature is C > N, and the nutrient return amounts are 76.51-180.69 kg·hm<sup>-2</sup> and 2.3 - 5.71 kg·hm<sup>-2</sup> respectively. Conclusion: The annual litter productivity and nutrient return amount of the evergreen and deciduous broad-leaved mixed forest are the highest among the three forest stands. Therefore, protecting the evergreen and deciduous broad-leaved mixed forest and studying the litter changes of Chinese fir plantation and Cryptomeria fortunei plantation are of far-reaching significance for the development of sustainable forest management in this region and the further improvement of the carbon sequestration function of the whole forest ecosystem.展开更多
基金supported by the National Key R&D Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250).
文摘Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.
基金supported by the National Key Research and Development Program of China (2021YFD1700200)the earmarked fund for CARS-Green manure (CARS-22)+2 种基金the Inner Mongolia Natural Science Foundation (2022QN03032)the National Natural Science Foundation of China (32101852, 42207388)the Inner Mongolia Science and Technology Plan Project (2023YFHH0011)
文摘In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金jointly supported by the National Natural Science Foundation of China(42361024,42101030,42261079,and 41961058)the Talent Project of Science and Technology in Inner Mongolia of China(NJYT22027 and NJYT23019)the Fundamental Research Funds for the Inner Mongolia Normal University,China(2022JBBJ014 and 2022JBQN093)。
文摘Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.
基金supported by the National Natural Science Foundation of China (Grant No. 42061004)the Joint Special Project of Agricultural Basic Research of Yunnan Province (Grant No. 202101BD070001093)the Youth Special Project of Xingdian Talent Support Program of Yunnan Province
文摘Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.
基金National Natural Science Foundation of China(32101844)Shandong Provincial Natural Science Foundation(ZR2021QC188 and ZR2022MC103).
文摘Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in the alternate cotton-peanut intercropping,specifically focusing on its yield benefits,environmental impacts,and the underlying mechanisms.In addition,we advocate for future investigations into the selection or development of appropriate crop varieties and agricultural equipment,pest management options,and the mechanisms of root-canopy interactions.This review is intended to provide a valuable reference for understanding and adopting an alternate intercropping system for sustainable cotton production.
基金This work was supported by the National Natural Science Foundation of China(72061147002 and 72373143)the National Social Science Fund of China(22&ZD085).
文摘China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs.
基金supported by the Science and Technology Planning Program of Guangdong Province(2013B020310010 and 2019B030301007)the Open Foundation of Key Laboratory for Agricultural Environment,Ministry of Agriculture and Rural Affairs,P.R.China.
文摘In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing and strategies in mitigating Cd-stressed rice,the precise mechanisms underlying the health restoration of Cd-toxic rice and the assurance of grain safety remain elusive.This study explored Cd translocation and detoxification in the shoots of rice regulated by various Si fertilization regimes:Si(T)(all Si added before transplanting),Si(J)(all Si added at jointing),and Si(TJ)(half Si added both before transplanting and at jointing).The findings revealed that the regime of Si(TJ)was more beneficial to rice health and grain safety than Si(T)and Si(J).The osmotic regulators such as proline,soluble sugars,and soluble proteins were significantly boosted by Si(TJ)compared to other Si treatments,and which enhanced membrane integrity,balanced intracellular pH,and increased Cd tolerance of rice.Furthermore,Si(TJ)was more effective than Si(T)and Si(J)on the Cd sequestration in the cell wall,Cd bio-passivation,and the down-regulated expression of the Cd transport genes.The concentrations of Cd in the xylem and phloem treated with Si(TJ)were reduced significantly.Additionally,Si(TJ)facilitated much more Cd bound with the outer layer proteins of grains,and promoted Cd chelation and complexation by phytic acid,phenolics,and flavonoids.Overall,Si(TJ)outperformed Si(T)and Si(J)in harmonizing the phycological processes,inhibiting Cd translocation,and enhancing Cd detoxification in rice plant.Thereby the split Si application strategy offers potential for reducing Cd toxicity in rice grain.
文摘[Objectives]Integrated land productivity can reflect the comprehensive utilization of land and the overall output level,which is the most basic and commonly used indicator in assessing land use efficiency.This thesis aims to analyze the spatial and temporal changes of integrated land productivity in Chongqing from 1997 to 2023 in order to assess its land use efficiency.[Methods]This study measured the integrated land productivity of Chongqing Municipality,the only municipality directly under the central government in the western part of China,over the past 26 years(1997-2023)through relevant surveys and statistical data,and analyzed in depth the integrated land productivity of the 38 districts and counties under the jurisdiction of Chongqing,as well as the functional sub-districts of the"one district and two clusters"and the"one district and two clusters"in Chongqing.It also analyzes the characteristics of spatial and temporal differences in land productivity in 38 districts and counties under the jurisdiction of Chongqing and"one district and two clusters".[Results]The results of the study show that over the past 26 years,the integrated land productivity of Chongqing has shown an annual growth trend,and the integrated land productivity of the 38 districts and counties and the functional subregions of"one district and two clusters"has also increased significantly,but the average annual growth rate of the integrated land productivity varies among different regions.From the perspective of spatial differences,there are significant differences in land productivity among the 38 districts and counties of Chongqing and the functional subregions of"one district and two clusters",which are mainly due to the different natural conditions,economic development levels and functional positioning of each region.[Conclusions]Based on the results of the study and the actual situation of Chongqing,this paper puts forward the leading measures to improve the integrated land productivity,with a view to providing a reference basis for Chongqing to improve the efficiency of land use and promote the sustainable use of land resources.
文摘To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius,that is,the formation has different permeability characteristics with the perforation depth as the dividing line.Generally,the permeability is measured by the permeability tester,but this approach has a high workload and limited application.In this paper,according to the reservoir characteristics of perforated horizontal wells,the reservoir is divided into two areas:the original reservoir area and the near-well high permeability reservoir area.Based on the theory of seepage mechanics and the formula of open hole productivity,the permeability calculation formula of near-well high permeability reservoir area with perforation parameters is deduced.According to the principle of seepage continuity,the seepage is regarded as the synthesis of two directions:the horizontal plane elliptic seepage field and the vertical plane radial seepage field,and the oil well productivity prediction model of the perforated horizontal well is established by partition.The model comparison demonstrates that the model is reasonable and feasible.To calculate and analyze the effect of oil well production and the law of influencing factors,actual production data of the oilfield are substituted into the oil well productivity formula.It can effectively guide the technical process design and effect prediction of perforated horizontal wells.
文摘The sustenance of humanity is contingent upon the production of food.The foundation of this production is agriculture,which in turn is dependent upon the cultivation of the land.As a fundamental element of agricultural advancement,the rational development and utilization of land play a pivotal role in the process of rural revitalization.Agricultural land productivity serves as a principal indicator of the efficacy of land utilization and the extent of agricultural advancement.Nevertheless,there is a paucity of research examining the productivity of agricultural land,particularly a lack of specialized research on large agricultural provinces.In light of the aforementioned considerations,this paper presents a comprehensive examination of agricultural land productivity and its regional variations in Heilongjiang Province in 2022,with the aid of pertinent statistical data.The findings of the analysis indicate that among the prefecture-level cities,Daqing and Suihua exhibit the highest levels of agricultural land productivity.Additionally,Zhaodong City,Zhaozhou,Qinggang,Wangkui,and Lanxi counties exhibit high levels of agricultural land productivity within their respective prefecture-level cities.There are notable disparities in agricultural land productivity across various regions,including Yichun,Heihe,Harbin,Daqing,Hegang,and Suihua.In contrast,other regions demonstrate a more balanced spatial distribution.In order to facilitate the prosperous development of the agricultural industry in Heilongjiang Province,it is essential to optimize the spatial planning of the land,to investigate the potential for agricultural development in each region,to establish effective collaboration between resources and industries,and to create a development synergy that will collectively advance rural revitalization.
基金supported by the National Natural Science Foundation of China[Grant No.72163018]Ministry of Education Humanities and Social Science Planning Fund Project[Grant No.23YJA790026]Yunnan Province Basic Research Program General Project[Grant No.202401AT070393].
文摘Maintaining moderate economic growth targets(EGTs)is the key for local governments to effectively implement the“carbon peak and carbon neutrality”goals under the refreshed development pattern.Utilizing panel data of 276 prefecture-level cities in China's Mainland from 2010 to 2020,and employing methods such as intermediary and threshold models,this study empirically analyzes the internal mechanism of EGT’s impact on urban carbon productivity(UCP).Our findings demonstrate that:①The overall EGT during the analyzed period is not conducive to improving UCP.This conclusion remains valid after a series of robustness tests.This effect is more pronounced in the central region and resource-based cities than in the east-west region and non resource-based cities.②EGT not only directly suppresses UCP but also exerts indirect negative impacts on UCP from three aspects:delaying the digital economy(DE),constraining financial expansion(FE),and hindering green technology innovation(GTI).This negative indirect effect is similar to or even surpasses the direct effect,suggesting that the internal relationship between EGT and“dual-carbon”goals should be re-evaluated from a new compound perspective.③EGT not only has a simple linear impact on UCP but also significantly exhibits a dynamic evolution pattern in inverted“U”shape.That is,as EGT continuously upgrades,a nonlinear impact on UCP emerges in the form of“promoting first,suppressing later”.This indicates that surpassing the“degree”limit for EGT will be detrimental to the improvement of UCP.This study broadens the scope of carbon productivity analysis by introducing a new perspective centered on EGT.The insights gleaned from this research offer valuable guidance for local governments to effectively manage economic growth expectations and promote the synchronized achievement of dual-carbon objectives.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
文摘This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.
基金supported by the Sino-German Postdoc Scholarship Program of the China Scholarship Council(CSC)the German Academic Exchange Service(DAAD)+4 种基金supported in part by the National Natural Science Foundation of China(Nos.32071541,41971071)the Ministry of Science and Technology of China(Nos.2021FY100200,2021FY100702,2023YFF0805802)the Youth Innovation Promotion Association,CAS(No.2021392)the International Partnership Program,CAS(No.151853KYSB20190027)the“Climate Change Research Initiative of the Bavarian National Parks”funded by the Bavarian State Ministry of the Environment and Consumer Protection.
文摘An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.
基金The US Department of State for sponsoring undergraduate exchange program。
文摘Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.
文摘The construction industry, known for its low productivity, is increasingly utilising software and mobile apps to enhance efficiency. However, more comprehensive research is needed to understand the effectiveness of these technology applications. The PRISMA principles utilised a scoping review methodology to ascertain pertinent studies and extract significant findings. From 2013 onwards, articles containing data on mobile applications or software designed to enhance productivity in the construction sector were obtained from multiple databases, including Emerald Insight, Science Direct, IEEE Xplore, and Google Scholar. After evaluating 2604 articles, 30 were determined to be pertinent to the study and were subsequently analysed for the review. The review identified five key themes: effectiveness, benefits, successful implementation examples, obstacles and limitations, and a comprehensive list of software and mobile apps. In addition, 71 software and mobile apps have shown potentially how these technologies can improve communication, collaboration, project management, real-time collaboration, document management, and on-the-go project information and estimating processes in the construction industry, increasing efficiency and productivity. The findings highlight the potential of these technologies such as Automation, Radio-Frequency Identification (RFID), Building Information Modeling (BIM), Augmented Reality (AR), Virtual Reality (VR), and Internet of Things (IoT) to improve efficiency and communication in the construction industry. Despite challenges such as cost, lack of awareness, resistance to change, compatibility concerns, human resources, technological and security concerns and licensing issues, the study identifies specific mobile applications and software with the potential to enhance efficiency significantly, improve productivity and streamline workflows. The broader societal impacts of construction software and mobile app development include increased efficiency, job creation, and sustainability.
基金Supported by School-level Natural Science Project of Jiangxi University of Technology(232ZRYB02).
文摘The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the construction industry to a higher level by scientifically and accurately measuring the total factor productivity of the construction industry and deeply analyzing the influencing factors behind it.Based on a comprehensive consideration of research methods and influencing factors,this paper systematically reviews the existing relevant literature on total factor productivity in the construction industry,aiming to reveal the current research development trend in this field and point out potential problems.This effort aims to provide a solid theoretical foundation and valuable reference for further in-depth research,and jointly promote the continuous progress and development of total factor productivity research in the construction industry.
文摘With the increasing integration of technology in modern workplaces, concerns have emerged regarding the addictive nature of technology and its potential consequences on employee productivity. This research aims to investigate the impact of technological addiction on workplace productivity within the public sector of Zimbabwe. The study employed a mixed-methods approach, combining surveys, interviews, and a case study analysis, to examine the prevalence and effects of technological addiction in affecting productivity in the public sector of Zimbabwe. The findings indicate that excessive use of social media, and other digital distractions is a growing concern in the public sector, leading to decreased focus, missed deadlines, and strained teamwork. Factors such as unrestricted internet access, lack of clear usage policies, and inadequate self-regulation contribute to the problem The research outcomes also highlight the need for awareness and interventions to address social media addiction in the workplace, promote healthier technology use, and uphold productivity and employee well-being.
文摘Objective: The paper aims to analyze the dynamic characteristics of litter production and nutrient return of the forest ecosystems in subtropical areas, and provide a theoretical basis for the nutrient cycling study in southwest Hubei Province and carbon sink function of the whole forest ecosystem. Methods: Three typical forest stands (Chinese fir plantation, Cryptomeria fortunei plantation and evergreen and deciduous broad-leaved mixed forest) in Golden Mountain Forest Farm in southwest Hubei Province were investigated and monitored continuously for the litter types and productivity and nutrient return. Results: The annual litter productivity of the three forest stands ranged from 161.77 to 396.26 kg·hm<sup>-2</sup>;Litters of branches, leaves and reproductive organs accounted for 14.14% - 20.85%, 33.26% - 78.33%, 7.52% - 42.18% of the total, respectively;The litter productivity and total litter productivity of each composition in the three forest stands show unimodal or bimodal changes over months, and the total litter productivity reached the highest value in January, April and October respectively. For different nutrient contents of the three forest stands, the common feature is C > N. The order of nutrient return amount from greatest to least is evergreen and deciduous broad-leaved mixed forest, Cryptomeria fortunei plantation and Chinese fir plantation. For different nutrient return amounts, the common feature is C > N, and the nutrient return amounts are 76.51-180.69 kg·hm<sup>-2</sup> and 2.3 - 5.71 kg·hm<sup>-2</sup> respectively. Conclusion: The annual litter productivity and nutrient return amount of the evergreen and deciduous broad-leaved mixed forest are the highest among the three forest stands. Therefore, protecting the evergreen and deciduous broad-leaved mixed forest and studying the litter changes of Chinese fir plantation and Cryptomeria fortunei plantation are of far-reaching significance for the development of sustainable forest management in this region and the further improvement of the carbon sequestration function of the whole forest ecosystem.