Production and destruction processes of carbon monoxide (CO) and ozone (O3) are examined in the light of increasing amount of atmospheric carbon dioxide (CO2). It is found that doubling of CO2 will increase the strato...Production and destruction processes of carbon monoxide (CO) and ozone (O3) are examined in the light of increasing amount of atmospheric carbon dioxide (CO2). It is found that doubling of CO2 will increase the stratospheric concentration of CO and will have positive effect on O3 concentration.展开更多
The CO_2-seawater system and the method for calculating the partial pressure of CO2 (pCO2) in seawater are studied. The buffer capability of the ocean to increasing atmospheric CO2 is expressed in terms of the differe...The CO_2-seawater system and the method for calculating the partial pressure of CO2 (pCO2) in seawater are studied. The buffer capability of the ocean to increasing atmospheric CO2 is expressed in terms of the differential buffer factor and buffer index. Dissolutions of aragonite and calcite have a significant inffluence on the differential buffer factor. The trend of change in the buffer factor is obtained by a box model.展开更多
Arctic sea ice is a keystone indicator of greenhouse-gas induced global climate change, which is expected to be amplified in the Arctic. Here we directly compare observed variations in arctic sea-ice extent and CO 2 s...Arctic sea ice is a keystone indicator of greenhouse-gas induced global climate change, which is expected to be amplified in the Arctic. Here we directly compare observed variations in arctic sea-ice extent and CO 2 since the beginning of the 20th century, identifying a strengthening linkage, such that in recent decades the rate of sea-ice decrease mirrors the increase in CO 2 , with r ~ -0.95 over the last four decades, thereby indicating that 90% (r 2 ~ 0.90) of the decreasing sea-ice extent is empirically "accounted for" by the increasing CO 2 in the atmosphere. The author presents an empirical relation between annual sea-ice extent and global atmospheric CO 2 concentrations, in which sea-ice reductions are linearly, inversely proportional to the magnitude of increase of CO 2 over the last few decades. This approximates sea-ice changes during the most recent four decades, with a proportionality constant of 0.030 million km 2 per ppmv CO 2 . When applied to future emission scenarios of the Intergovernmental Panel on Climate Change (IPCC), this relationship results in substantially faster ice decreases up to 2050 than predicted by IPCC models. However, departures from this projection may arise from non-linear feedback effects and/or temporary natural variations on interannual timescales, such as the record minimum of sea-ice extent observed in September 2007.展开更多
A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to st...A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to study the sensitivity of global warming to the vertical diffusivity. The results suggest that the behaviour of upper ocean temperature is mainly determined by the magnitude of upper layer diffusivity and an ocean with a larger diffusivity leads to a less increase of sea surface temperature and a longer time delay for the global warming induced by increasing CO2 than that with smaller one. The global warming relative to four scenarios of CO2 emission assumed by Intergovernmental Panel of Climate Change (IPCC) is also estimated by using the model with two kinds of thermal diffusivities. The result shows that for various combinations of the CO2 emission scenarios and the diffusivities, the oceanic time delay to the global warming varies from 15 years to 70 years.展开更多
In this paper, a coupled model was used to estimate the responses of soil moisture and net primary production of vegetation(NPP) to increasing atmospheric CO2 concentration and climate change. The analysis uses three ...In this paper, a coupled model was used to estimate the responses of soil moisture and net primary production of vegetation(NPP) to increasing atmospheric CO2 concentration and climate change. The analysis uses three experiments simulated by the second-generation Earth System Model(CanESM2) of the Canadian Centre for Climate Modelling and Analysis(CCCma), which are part of the phase 5 of the Coupled Model Intercomparison Project(CMIP5). The authors focus on the magnitude and evolution of responses in soil moisture and NPP using simulations modeled by CanESM, in which the individual effects of increasing CO2 concentration and climate change and their combined effect are separately accounted for. When considering only the single effect of climate change, the soil moisture and NPP have a linear trend of 0.03 kg m–2 yr–1 and –0.14 gC m–2 yr–2, respectively. However, such a reduction in the global NPP results from the decrease of NPP at lower latitudes and in the Southern Hemisphere, although increased NPP has been shown in high northern latitudes. The largest negative trend is located in the Amazon basin at –1.79 gC m–2 yr–2. For the individual effect of increasing CO2 concentration, both soil moisture and NPP show increases, with an elevated linear trend of 0.02 kg m–2 yr–1 and 0.84 gC m–2 yr–2, respectively. Most regions show an increasing NPP, except Alaska. For the combined effect of increasing atmospheric CO2 and climate change, the increased soil moisture and NPP exhibit a linear trend of 0.04 kg m–2 yr–1 and 0.83 gC m–2 yr–2 at a global scale. In the Amazon basin, the higher reduction in soil moisture is illustrated by the model, with a linear trend of –0.39 kg m–2 yr–1, for the combined effect. Such a change in soil moisture is caused by a weakened Walker circulation simulated by this coupled model, compared with the single effect of increasing CO2 concentration(experiment M2), and a consequence of the reduction in NPP is also shown in this area, with a linear trend of-0.16 gC m-2 yr-2.展开更多
文摘Production and destruction processes of carbon monoxide (CO) and ozone (O3) are examined in the light of increasing amount of atmospheric carbon dioxide (CO2). It is found that doubling of CO2 will increase the stratospheric concentration of CO and will have positive effect on O3 concentration.
文摘The CO_2-seawater system and the method for calculating the partial pressure of CO2 (pCO2) in seawater are studied. The buffer capability of the ocean to increasing atmospheric CO2 is expressed in terms of the differential buffer factor and buffer index. Dissolutions of aragonite and calcite have a significant inffluence on the differential buffer factor. The trend of change in the buffer factor is obtained by a box model.
基金supported by the Mohn-Sverdrup Center for Global Ocean StudiesOperational Oceanography at the Nansen Center and the Research Council of Norway+1 种基金is a contribution to the International Polar Year―Climate of the Arcticits Role for Europe (IPY-CARE) project, headed by the author
文摘Arctic sea ice is a keystone indicator of greenhouse-gas induced global climate change, which is expected to be amplified in the Arctic. Here we directly compare observed variations in arctic sea-ice extent and CO 2 since the beginning of the 20th century, identifying a strengthening linkage, such that in recent decades the rate of sea-ice decrease mirrors the increase in CO 2 , with r ~ -0.95 over the last four decades, thereby indicating that 90% (r 2 ~ 0.90) of the decreasing sea-ice extent is empirically "accounted for" by the increasing CO 2 in the atmosphere. The author presents an empirical relation between annual sea-ice extent and global atmospheric CO 2 concentrations, in which sea-ice reductions are linearly, inversely proportional to the magnitude of increase of CO 2 over the last few decades. This approximates sea-ice changes during the most recent four decades, with a proportionality constant of 0.030 million km 2 per ppmv CO 2 . When applied to future emission scenarios of the Intergovernmental Panel on Climate Change (IPCC), this relationship results in substantially faster ice decreases up to 2050 than predicted by IPCC models. However, departures from this projection may arise from non-linear feedback effects and/or temporary natural variations on interannual timescales, such as the record minimum of sea-ice extent observed in September 2007.
文摘A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to study the sensitivity of global warming to the vertical diffusivity. The results suggest that the behaviour of upper ocean temperature is mainly determined by the magnitude of upper layer diffusivity and an ocean with a larger diffusivity leads to a less increase of sea surface temperature and a longer time delay for the global warming induced by increasing CO2 than that with smaller one. The global warming relative to four scenarios of CO2 emission assumed by Intergovernmental Panel of Climate Change (IPCC) is also estimated by using the model with two kinds of thermal diffusivities. The result shows that for various combinations of the CO2 emission scenarios and the diffusivities, the oceanic time delay to the global warming varies from 15 years to 70 years.
基金supported by the project of the National Natural Science Foundation of China (Grant Nos. 41275082 and 41305070)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110103)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-EW-QN208 and 7-122158)
文摘In this paper, a coupled model was used to estimate the responses of soil moisture and net primary production of vegetation(NPP) to increasing atmospheric CO2 concentration and climate change. The analysis uses three experiments simulated by the second-generation Earth System Model(CanESM2) of the Canadian Centre for Climate Modelling and Analysis(CCCma), which are part of the phase 5 of the Coupled Model Intercomparison Project(CMIP5). The authors focus on the magnitude and evolution of responses in soil moisture and NPP using simulations modeled by CanESM, in which the individual effects of increasing CO2 concentration and climate change and their combined effect are separately accounted for. When considering only the single effect of climate change, the soil moisture and NPP have a linear trend of 0.03 kg m–2 yr–1 and –0.14 gC m–2 yr–2, respectively. However, such a reduction in the global NPP results from the decrease of NPP at lower latitudes and in the Southern Hemisphere, although increased NPP has been shown in high northern latitudes. The largest negative trend is located in the Amazon basin at –1.79 gC m–2 yr–2. For the individual effect of increasing CO2 concentration, both soil moisture and NPP show increases, with an elevated linear trend of 0.02 kg m–2 yr–1 and 0.84 gC m–2 yr–2, respectively. Most regions show an increasing NPP, except Alaska. For the combined effect of increasing atmospheric CO2 and climate change, the increased soil moisture and NPP exhibit a linear trend of 0.04 kg m–2 yr–1 and 0.83 gC m–2 yr–2 at a global scale. In the Amazon basin, the higher reduction in soil moisture is illustrated by the model, with a linear trend of –0.39 kg m–2 yr–1, for the combined effect. Such a change in soil moisture is caused by a weakened Walker circulation simulated by this coupled model, compared with the single effect of increasing CO2 concentration(experiment M2), and a consequence of the reduction in NPP is also shown in this area, with a linear trend of-0.16 gC m-2 yr-2.