The oceans are the largest carbon pools on Earth, and play the role of a "buffer" in climate change. Blue carbon, the carbon(mainly organic carbon) captured by marine ecosystems, is one of the important mech...The oceans are the largest carbon pools on Earth, and play the role of a "buffer" in climate change. Blue carbon, the carbon(mainly organic carbon) captured by marine ecosystems, is one of the important mechanisms of marine carbon storage.Blue carbon was initially recognized only in the form of visible coastal plant carbon sequestration. In fact, microorganisms(phytoplankton, bacteria, archaea, viruses, and protozoa), which did not receive much attention in the past, account for more than 90% of the total marine biomass and are the main contributors to blue carbon. Chinese coastal seas, equivalent to 1/3 of China's total land area, have a huge carbon sink potential needing urgently research and development. In this paper, we focus on the processes and mechanisms of coastal ocean's carbon sequestration and the approaches for increasing that sequestration. We discuss the structures of coastal ecosystems, the processes of carbon cycle, and the mechanisms of carbon sequestration. Using the evolution of coastal ocean's carbon sinks in sedimentary records over geologic times, we also discuss the possible effects of natural processes and anthropogenic activities on marine carbon sinks. Finally, we discuss the prospect of using carbon sequestration engineering for increasing coastal ocean's carbon storage capacity.展开更多
Marine macroalgae cultivation is an important part of the effort to address climate change through carbon sinks.Gracilaria,especially Gracilaria lemaneiformis and Gracilaria lichenoides are the major macroalgae cultiv...Marine macroalgae cultivation is an important part of the effort to address climate change through carbon sinks.Gracilaria,especially Gracilaria lemaneiformis and Gracilaria lichenoides are the major macroalgae cultivated in China.This study proposes a method to assess the net carbon sink of marine macroalgae(Gracilaria)cultivation.First,the net carbon sink of Gracilaria cultivation in China is calculated based on the yield of annual cultivated Gracilaria recorded in China Fishery Statistical Yearbook from 2011 to 2020.Next,we predict the net carbon sink trend of Gracilaria cultivation from 2021 to 2030 using the autoregressive integrated moving average model(ARIMA).Finally,the potential carbon sink increase and methane reduction related to Gracilaria cultivation in China is explored through a scenario analysis.We find that the net carbon sink of Gracilaria cultivation in China was about 32.1-92.4 kilotons per year from 2011 to 2020,and shows a great annual growth trend.Moreover,the predicted net carbon sink of Gracilaria cultivation would increase to 77.8-191.4 kilotons per year from 2021 to2030,thereby could contribute considerably in the achievement of China's carbon peak goal.Under a scenario of producing ruminant green feed with additional Gracilaria cultivation,each ton of macroalgae is predicted to reduce carbon emission(i.e.,methane)by 0.33-0.68 tons.Thus,marine macroalgae cultivation might form a synergistic chain of"carbon sink increase-water purification-economy-methane reduction".This study proposes a synergistic new model that operates through marine macroalgae cultivation,economic aquaculture,and green feed production.展开更多
基金supported by the National Key Research Programs (Grant Nos. 2013CB955700 & 2016YFA0601400)the National Natural Science Foundation of China (Grant Nos. 41422603, 41676125 and 91428308)the National Programme on Global Change and Air-Sea Interaction (Grant No. GASI-0301-02-03)
文摘The oceans are the largest carbon pools on Earth, and play the role of a "buffer" in climate change. Blue carbon, the carbon(mainly organic carbon) captured by marine ecosystems, is one of the important mechanisms of marine carbon storage.Blue carbon was initially recognized only in the form of visible coastal plant carbon sequestration. In fact, microorganisms(phytoplankton, bacteria, archaea, viruses, and protozoa), which did not receive much attention in the past, account for more than 90% of the total marine biomass and are the main contributors to blue carbon. Chinese coastal seas, equivalent to 1/3 of China's total land area, have a huge carbon sink potential needing urgently research and development. In this paper, we focus on the processes and mechanisms of coastal ocean's carbon sequestration and the approaches for increasing that sequestration. We discuss the structures of coastal ecosystems, the processes of carbon cycle, and the mechanisms of carbon sequestration. Using the evolution of coastal ocean's carbon sinks in sedimentary records over geologic times, we also discuss the possible effects of natural processes and anthropogenic activities on marine carbon sinks. Finally, we discuss the prospect of using carbon sequestration engineering for increasing coastal ocean's carbon storage capacity.
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2021SP203)。
文摘Marine macroalgae cultivation is an important part of the effort to address climate change through carbon sinks.Gracilaria,especially Gracilaria lemaneiformis and Gracilaria lichenoides are the major macroalgae cultivated in China.This study proposes a method to assess the net carbon sink of marine macroalgae(Gracilaria)cultivation.First,the net carbon sink of Gracilaria cultivation in China is calculated based on the yield of annual cultivated Gracilaria recorded in China Fishery Statistical Yearbook from 2011 to 2020.Next,we predict the net carbon sink trend of Gracilaria cultivation from 2021 to 2030 using the autoregressive integrated moving average model(ARIMA).Finally,the potential carbon sink increase and methane reduction related to Gracilaria cultivation in China is explored through a scenario analysis.We find that the net carbon sink of Gracilaria cultivation in China was about 32.1-92.4 kilotons per year from 2011 to 2020,and shows a great annual growth trend.Moreover,the predicted net carbon sink of Gracilaria cultivation would increase to 77.8-191.4 kilotons per year from 2021 to2030,thereby could contribute considerably in the achievement of China's carbon peak goal.Under a scenario of producing ruminant green feed with additional Gracilaria cultivation,each ton of macroalgae is predicted to reduce carbon emission(i.e.,methane)by 0.33-0.68 tons.Thus,marine macroalgae cultivation might form a synergistic chain of"carbon sink increase-water purification-economy-methane reduction".This study proposes a synergistic new model that operates through marine macroalgae cultivation,economic aquaculture,and green feed production.