Incremental dynamic analysis and nonlinear static pushover analysis are carried out on a performance-based design to determine the seismic demands and capacities of an elliptic braced moment resisting frame(ELBRF).The...Incremental dynamic analysis and nonlinear static pushover analysis are carried out on a performance-based design to determine the seismic demands and capacities of an elliptic braced moment resisting frame(ELBRF).The objective is to assess ductility,overstrength and response modification factors in a modern steel-braced structural system based on incremental dynamic analysis.This integrated system is connected to a beam and column with an appropriate length while providing enough architectural space to allow for an opening without having the common problems associated with architectural spaces in braced systems.Several different classes of buildings are considered on soil type II.Linear dynamic analysis,nonlinear static pushover analysis and incremental nonlinear dynamic analysis related to 12 records from past earthquakes are carried out using OpenSees software.The factors of ductility,overstrength and response modification are calculated for this system.The values of 9.5 and 6.5 are found and suggested only for the response modification factor for ELBRF systems in allowable stress and ultimate limit state methods,respectively.The fragility curves are plotted for the first time for this type of bracing,which contributes to the assessment of building seismic damage.展开更多
The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake ...The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake records are applied to a structure at successively increasing intensity levels,which causes the structure to shift from the elastic state into the inelastic state and finally into collapse.In this way,the limit-states and capacity of a structure can be determined.In the present research,the IDA of a concrete gravity dam considering a nonlinear concrete behavior,and sliding planes within the dam body and at the dam-foundation interface,is performed.The influence of the friction angle and lift joint slope on the response parameters are investigated and the various limit-states of the dam are recognized.It is observed that by introducing a lift joint,the tensile damage can be avoided for the dam structure.The lift joint sliding is essentially independent of the base joint friction angle and the upper ligament over the inclined lift joint slides into the upstream direction in strong earthquakes.展开更多
In an incremental dynamic analysis(IDA) using a set of ground motion records,nonlinear time history analysis needs to be performed on structures.It is well recognized that IDA calls for high computational efforts and ...In an incremental dynamic analysis(IDA) using a set of ground motion records,nonlinear time history analysis needs to be performed on structures.It is well recognized that IDA calls for high computational efforts and the results are highly sensitive to selected ground motions.As a result,alternative static methods are needed.This study aims to introduce a new double-stage(N1- N2) static method to estimate capacity curves of MR frames.The technique is regulated to resemble IDA results with specific emphasis on near-field ground motions.Using an ensemble of 56 near-field earthquake records,required ID As have been carried out for SAC-Los Angeles 3-,9- and 20-story buildings and an additional 15-story building.The results of the proposed static method are compared with those from IDA,displacement-based adaptive procedure(DAP),and multimodal procedure(MMP).The results indicate that in addition to enhanced accuracy,very little time is required in the case of N1-N2 method.Thus,for the 3-story structure,the time required is less than 1 minute.The proposed N1-N2 method shows the best accuracy in terms of lateral mechanisms for the 15-story frame while for the other cases,the first mode load pattern leads to the best accuracy.展开更多
A cloud method for generating percentile engineering demand parameter versus intensity measure(EDP-IM) curves of a structure subjected to a set of synthetic ground motions is presented. To this end, an ensemble of syn...A cloud method for generating percentile engineering demand parameter versus intensity measure(EDP-IM) curves of a structure subjected to a set of synthetic ground motions is presented. To this end, an ensemble of synthetic ground motions based on available real ones is generated. This is done by using attenuation relationships, duration and suitable Gutenberg-Richter relations attributed to the considered seismic hazard at a given site by estimating a suitable distribution of magnitude and site to source distance. The study aims to clarify the significance of the duration and frequency content on the seismic performance of structures, which were not considered in developing percentile incremental dynamic analysis(IDA) curves. The collapse probabilities of two steel moment-resisting frames with different ductility levels generated by IDA and the proposed cloud method are compared at different intensity levels. When compared with conventional IDA, the suggested cloud analysis(SCA) methodology with the same run number of dynamic analyses was able to develop response hazard curves that were more consistent with site-specific seismic hazards. Eliminating the need to find many real records by generating synthetic records consistent with site-specific seismic hazards from a few available recorded ground motions is another advantage of using this scheme over the IDA method..展开更多
Current building design codes allow the appearance of structural and nonstructural damage under design basis earthquakes.The research regarding probabilistic seismic loss estimation in domestic building structure is u...Current building design codes allow the appearance of structural and nonstructural damage under design basis earthquakes.The research regarding probabilistic seismic loss estimation in domestic building structure is urgent.The evaluation in this paper is based on a 11-story reinforced concrete office building,incremental dynamic analysis(IDA)is conducted in Perform 3D program using models capable to simulate all possible limit states up to collapse.Next,the probability distribution of post-earthquake casualties,rebuild costs repair costs and business downtime loss are calculated in PACT software for the studied building considering the modified component vulnerability groups and population flow models.The evaluation procedure can also shed light on other types of buildings in China.For non-typical functional building structures,this article proposes to build a finite element model of structural components and to classify the vulnerability groups based on the construction drawings,and to supply and improve the vulnerability library of appendages in FEMA P-58 according to the actual situation.In this way,the application scope of building seismic performance evaluation can be expanded.展开更多
This study focuses on the seismic fragility analysis of arch dams.The multiple stripe analysis(MSA),cloud analysis(CLA),and incremental dynamic analysis(IDA)methods are compared.A comprehensive dam-reservoir-foundatio...This study focuses on the seismic fragility analysis of arch dams.The multiple stripe analysis(MSA),cloud analysis(CLA),and incremental dynamic analysis(IDA)methods are compared.A comprehensive dam-reservoir-foundation rock system,which considers the opening of contraction joints,the nonlinearity of dam concrete and foundation rock,the radiation damping effect of semi-unbounded foundation,and the compressibility of reservoir water,is used as a numerical example.225,80,and 15 earthquake records are selected for MSA,CLA,and IDA,respectively.The results show that MSA provides satisfactory fragility analysis,while both CLA and IDA have assumptions that may lead to deviations.Therefore,MSA is the most reliable method among the three methods and is recommended for the fragility analysis of arch dams.It is also shown that the choice of demand level affects the reliability of fragility curves and the effect of the material uncertainty on the fragility of the dam is not significant.展开更多
Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,a...Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,and explosion.Many different test standards that include abuse conditions have been developed,but these generally consider only one condition at a time and only provide go/no-go criteria.In this work,different types of cell abuse are implemented concurrently to determine the extent to which simultaneous abuse conditions aggravate cell degradation and failure.Vibrational loading is chosen to be the consistent type of physical abuse,and the first group of cells is cycled at different vibrational frequencies.The next group of cells is cycled at the same frequencies,with multiple charge pulses occurring during each discharge.The final group of cells is cycled at the same frequencies,with a partial nail puncture occurring near the beginning of cycling.The results show that abusing cells with vibrational loading or vibrational loading with current pulses does not cause a significant decrease in operational capabilities while abusing cells with vibrational loading and a nail puncture drastically reduces operational capabilities.The cells with vibration only experience an increase in internal resistance by a factor of 1.09–1.26,the cells with vibration and current pulses experience an increase in internal resistance by a factor of 1.16–1.23,and all cells from each group reach their rated lifetime of 500 cycles without reaching their end-of-life capacity.However,the cells with vibration and nail puncture experience an increase in internal resistance by a factor of 6.83–22.1,and each cell reaches its end-of-life capacity within 50 cycles.Overall,the results show that testing multiple abuse conditions simultaneously provides a better representation of the extreme limitations of cell operation and should be considered for inclusion in reference test standards.展开更多
Purpose–The smoothness of the high-speed railway(HSR)on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges,which may threaten the safety of running trains.Indeed,few stu...Purpose–The smoothness of the high-speed railway(HSR)on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges,which may threaten the safety of running trains.Indeed,few studies have evaluated the exceeding probability of rail displacement exceeding the allowable standard.The purposes of this article are to provide a method for investigating the exceeding probability of the rail displacement of HSRs under seismic excitation and to calculate the exceeding probability.Design/methodology/approach–In order to investigate the exceeding probability of the rail displacement under different seismic excitations,the workflow of analyzing the smoothness of the rail based on incremental dynamic analysis(IDA)is proposed,and the intensity measure and limit state for the exceeding probability analysis of HSRs are defined.Then a finite element model(FEM)of an assumed HSR track-bridge system is constructed,which comprises a five-span simply-supported girder bridge supporting a finite length CRTS II ballastless track.Under different seismic excitations,the seismic displacement response of the rail is calculated;the character of the rail displacement is analyzed;and the exceeding probability of the rail vertical displacement exceeding the allowable standard(2mm)is investigated.Findings–The results show that:(1)The bridge-abutment joint position may form a step-like under seismic excitation,threatening the running safety of high-speed trains under seismic excitations,and the rail displacements at mid-span positions are bigger than that at other positions on the bridge.(2)The exceeding probability of rail displacement is up to about 44%when PGA 50.01g,which is the level-five risk probability and can be described as’very likely to happen’.(3)The exceeding probability of the rail at the mid-span positions is bigger than that above other positions of the bridge,and the mid-span positions of the track-bridge system above the bridge may be the most hazardous area for the running safety of trains under seismic excitation when high-speed trains run on bridges.Originality/value–The work extends the seismic hazardous analysis of HSRs and would lead to a better understanding of the exceeding probability for the rail of HSRs under seismic excitations and better references for the alert of the HSR operation.展开更多
文摘Incremental dynamic analysis and nonlinear static pushover analysis are carried out on a performance-based design to determine the seismic demands and capacities of an elliptic braced moment resisting frame(ELBRF).The objective is to assess ductility,overstrength and response modification factors in a modern steel-braced structural system based on incremental dynamic analysis.This integrated system is connected to a beam and column with an appropriate length while providing enough architectural space to allow for an opening without having the common problems associated with architectural spaces in braced systems.Several different classes of buildings are considered on soil type II.Linear dynamic analysis,nonlinear static pushover analysis and incremental nonlinear dynamic analysis related to 12 records from past earthquakes are carried out using OpenSees software.The factors of ductility,overstrength and response modification are calculated for this system.The values of 9.5 and 6.5 are found and suggested only for the response modification factor for ELBRF systems in allowable stress and ultimate limit state methods,respectively.The fragility curves are plotted for the first time for this type of bracing,which contributes to the assessment of building seismic damage.
文摘The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake records are applied to a structure at successively increasing intensity levels,which causes the structure to shift from the elastic state into the inelastic state and finally into collapse.In this way,the limit-states and capacity of a structure can be determined.In the present research,the IDA of a concrete gravity dam considering a nonlinear concrete behavior,and sliding planes within the dam body and at the dam-foundation interface,is performed.The influence of the friction angle and lift joint slope on the response parameters are investigated and the various limit-states of the dam are recognized.It is observed that by introducing a lift joint,the tensile damage can be avoided for the dam structure.The lift joint sliding is essentially independent of the base joint friction angle and the upper ligament over the inclined lift joint slides into the upstream direction in strong earthquakes.
文摘In an incremental dynamic analysis(IDA) using a set of ground motion records,nonlinear time history analysis needs to be performed on structures.It is well recognized that IDA calls for high computational efforts and the results are highly sensitive to selected ground motions.As a result,alternative static methods are needed.This study aims to introduce a new double-stage(N1- N2) static method to estimate capacity curves of MR frames.The technique is regulated to resemble IDA results with specific emphasis on near-field ground motions.Using an ensemble of 56 near-field earthquake records,required ID As have been carried out for SAC-Los Angeles 3-,9- and 20-story buildings and an additional 15-story building.The results of the proposed static method are compared with those from IDA,displacement-based adaptive procedure(DAP),and multimodal procedure(MMP).The results indicate that in addition to enhanced accuracy,very little time is required in the case of N1-N2 method.Thus,for the 3-story structure,the time required is less than 1 minute.The proposed N1-N2 method shows the best accuracy in terms of lateral mechanisms for the 15-story frame while for the other cases,the first mode load pattern leads to the best accuracy.
文摘A cloud method for generating percentile engineering demand parameter versus intensity measure(EDP-IM) curves of a structure subjected to a set of synthetic ground motions is presented. To this end, an ensemble of synthetic ground motions based on available real ones is generated. This is done by using attenuation relationships, duration and suitable Gutenberg-Richter relations attributed to the considered seismic hazard at a given site by estimating a suitable distribution of magnitude and site to source distance. The study aims to clarify the significance of the duration and frequency content on the seismic performance of structures, which were not considered in developing percentile incremental dynamic analysis(IDA) curves. The collapse probabilities of two steel moment-resisting frames with different ductility levels generated by IDA and the proposed cloud method are compared at different intensity levels. When compared with conventional IDA, the suggested cloud analysis(SCA) methodology with the same run number of dynamic analyses was able to develop response hazard curves that were more consistent with site-specific seismic hazards. Eliminating the need to find many real records by generating synthetic records consistent with site-specific seismic hazards from a few available recorded ground motions is another advantage of using this scheme over the IDA method..
基金This research has been supported by the National Natural ScienceFoundation of China (Grant No. 51778135 )the Natural Science Foundation of JiangsuProvince (Grant No. BK20160207)+1 种基金Aeronautical Science Foundation of China (GrantNo. 20130969010)the Fundamental Research Funds for the Central Universities andPostgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No.KYCX18_0113 and KYLX16_0253).
文摘Current building design codes allow the appearance of structural and nonstructural damage under design basis earthquakes.The research regarding probabilistic seismic loss estimation in domestic building structure is urgent.The evaluation in this paper is based on a 11-story reinforced concrete office building,incremental dynamic analysis(IDA)is conducted in Perform 3D program using models capable to simulate all possible limit states up to collapse.Next,the probability distribution of post-earthquake casualties,rebuild costs repair costs and business downtime loss are calculated in PACT software for the studied building considering the modified component vulnerability groups and population flow models.The evaluation procedure can also shed light on other types of buildings in China.For non-typical functional building structures,this article proposes to build a finite element model of structural components and to classify the vulnerability groups based on the construction drawings,and to supply and improve the vulnerability library of appendages in FEMA P-58 according to the actual situation.In this way,the application scope of building seismic performance evaluation can be expanded.
基金National Natural Science Foundation of China under Grant Nos.51725901 and 52022047the State Key Laboratory of Hydroscience and Hydraulic Engineering under Grant No.2021-KY-04。
文摘This study focuses on the seismic fragility analysis of arch dams.The multiple stripe analysis(MSA),cloud analysis(CLA),and incremental dynamic analysis(IDA)methods are compared.A comprehensive dam-reservoir-foundation rock system,which considers the opening of contraction joints,the nonlinearity of dam concrete and foundation rock,the radiation damping effect of semi-unbounded foundation,and the compressibility of reservoir water,is used as a numerical example.225,80,and 15 earthquake records are selected for MSA,CLA,and IDA,respectively.The results show that MSA provides satisfactory fragility analysis,while both CLA and IDA have assumptions that may lead to deviations.Therefore,MSA is the most reliable method among the three methods and is recommended for the fragility analysis of arch dams.It is also shown that the choice of demand level affects the reliability of fragility curves and the effect of the material uncertainty on the fragility of the dam is not significant.
基金Funding for this research has been provided by the Office of Naval Research(ONR)under the Grant N00014-20-1-2227(Program Manager:Dr.Maria Medeiros and Dr.Corey Love).
文摘Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,and explosion.Many different test standards that include abuse conditions have been developed,but these generally consider only one condition at a time and only provide go/no-go criteria.In this work,different types of cell abuse are implemented concurrently to determine the extent to which simultaneous abuse conditions aggravate cell degradation and failure.Vibrational loading is chosen to be the consistent type of physical abuse,and the first group of cells is cycled at different vibrational frequencies.The next group of cells is cycled at the same frequencies,with multiple charge pulses occurring during each discharge.The final group of cells is cycled at the same frequencies,with a partial nail puncture occurring near the beginning of cycling.The results show that abusing cells with vibrational loading or vibrational loading with current pulses does not cause a significant decrease in operational capabilities while abusing cells with vibrational loading and a nail puncture drastically reduces operational capabilities.The cells with vibration only experience an increase in internal resistance by a factor of 1.09–1.26,the cells with vibration and current pulses experience an increase in internal resistance by a factor of 1.16–1.23,and all cells from each group reach their rated lifetime of 500 cycles without reaching their end-of-life capacity.However,the cells with vibration and nail puncture experience an increase in internal resistance by a factor of 6.83–22.1,and each cell reaches its end-of-life capacity within 50 cycles.Overall,the results show that testing multiple abuse conditions simultaneously provides a better representation of the extreme limitations of cell operation and should be considered for inclusion in reference test standards.
基金supported by National Key Research and Development Plan of China“Basic Theory and Methods for Resilience Assessment and Risk Control of Transportation Infrastructures”(2021YFB2600500)the National Nature Science Foundation of Si Chuan(2023NSFSC0388)the Joint Research Fund for Earthquake Science launched by the National Natural Science Foundation of China and China Earthquake Administration(U2039208).
文摘Purpose–The smoothness of the high-speed railway(HSR)on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges,which may threaten the safety of running trains.Indeed,few studies have evaluated the exceeding probability of rail displacement exceeding the allowable standard.The purposes of this article are to provide a method for investigating the exceeding probability of the rail displacement of HSRs under seismic excitation and to calculate the exceeding probability.Design/methodology/approach–In order to investigate the exceeding probability of the rail displacement under different seismic excitations,the workflow of analyzing the smoothness of the rail based on incremental dynamic analysis(IDA)is proposed,and the intensity measure and limit state for the exceeding probability analysis of HSRs are defined.Then a finite element model(FEM)of an assumed HSR track-bridge system is constructed,which comprises a five-span simply-supported girder bridge supporting a finite length CRTS II ballastless track.Under different seismic excitations,the seismic displacement response of the rail is calculated;the character of the rail displacement is analyzed;and the exceeding probability of the rail vertical displacement exceeding the allowable standard(2mm)is investigated.Findings–The results show that:(1)The bridge-abutment joint position may form a step-like under seismic excitation,threatening the running safety of high-speed trains under seismic excitations,and the rail displacements at mid-span positions are bigger than that at other positions on the bridge.(2)The exceeding probability of rail displacement is up to about 44%when PGA 50.01g,which is the level-five risk probability and can be described as’very likely to happen’.(3)The exceeding probability of the rail at the mid-span positions is bigger than that above other positions of the bridge,and the mid-span positions of the track-bridge system above the bridge may be the most hazardous area for the running safety of trains under seismic excitation when high-speed trains run on bridges.Originality/value–The work extends the seismic hazardous analysis of HSRs and would lead to a better understanding of the exceeding probability for the rail of HSRs under seismic excitations and better references for the alert of the HSR operation.