期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
采样算子调整的径向基网络增量映射学习算法
1
作者 游培寒 毕笃彦 王振家 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第4期655-658,共4页
为了提高增量映射学习(IPL)算法的效率,调整了径向基神经网络基函数的中心及方差,以达到调整采样算子的目的,同时,通过神经元函数相关性的计算,确定添加新神经元时,相关函数的阈值,为系统结构调整提供相应依据.新方法步骤相对简单,所以... 为了提高增量映射学习(IPL)算法的效率,调整了径向基神经网络基函数的中心及方差,以达到调整采样算子的目的,同时,通过神经元函数相关性的计算,确定添加新神经元时,相关函数的阈值,为系统结构调整提供相应依据.新方法步骤相对简单,所以算法速度较快;仿真结果表明,由于系统参数得到调整,对于同一问题,改进IPL算法得到的径向基神经网络结构较一般算法得到的网络结构简单,输出结果也较为精确. 展开更多
关键词 增量映射学习(ipl)算法 径向基(RBF)神经网络 三相训练法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部