The paper is discussing problems connected with embedment of the incubation time criterion for brittle fracture into finite element computational schemes. Incubation time fracture criterion is reviewed; practical ques...The paper is discussing problems connected with embedment of the incubation time criterion for brittle fracture into finite element computational schemes. Incubation time fracture criterion is reviewed; practical questions of its numerical implementation are extensively discussed. Several examples of how the incubation time fracture criterion can be used as fracture condition in finite element computations are given. The examples include simulations of dynamic crack propagation and arrest, impact crater formation (i.e. fracture in initially intact media), spall fracture in plates, propagation of cracks in pipelines. Applicability of the approach to model initiation, development and arrest of dynamic fracture is claimed.展开更多
The rates of soil N mineralization at soil depths of 0-15, 15-30, 30-45 and45-60 cm and moisture regimes were measured at three sand-fixation plantations of Pinus sylvestrisvar. mongolica by laboratory aerobic incubat...The rates of soil N mineralization at soil depths of 0-15, 15-30, 30-45 and45-60 cm and moisture regimes were measured at three sand-fixation plantations of Pinus sylvestrisvar. mongolica by laboratory aerobic incubation method. The results showed that average rates ofsoil net N-mineralization across soil depth varied from 1.06 to 7.52 mg · kg^(-1)·month^(-1) atsoil depths from 0 to 60 cm. Statistical analyses indicated that the effects of different soildepths, moistures and their interactions on net N-mineralization rates were significant (P < 0.05).The net N-mineralization rates significantly decreased with increasing soil depths and at depth 0-15cm accounted for 60.52% of that at depth of 0-60 cm. There was no difference in soil netN-mineralization rates between half and fully-saturated water treatments, however these rates weresubstantially higher than that without water treatment (P < 0.05). The factors influencing Nmineralization process have to be studied further in these semiarid pine ecosystems.展开更多
The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbon...The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbonates on CO2 emission from calcareous soil during closed-jar incubation, three incubation experiments were conducted by adding different types (CaCO3 and MgCO3) and amounts of carbonate to the soil. The addition of carbonates significantly increased CO2 emission from the soil; the increase ranged from 12.0~ in the CaCO3 amended soil to 460~0 in the MgCO3 amended soil during a 100-d incubation. Cumulative CO2 production at the end of the incubation was three times greater in the MgCO3 amended soil compared to the CaCO3 amended one. The CO2 emission increased with the amount of CaCO3 added to the soil. In contrast, CO2 emission decreased as the amount of MgCO3 added to the soil increased. Our results confirmed that the closed-jar incubation method could lead to an overestimate of organic C mineralization in calcareous soils. Because of its effect on soil pH and the dissolution of carbonates, HgC12 should not be used to sterili~.e calcareous soil if the experiment includes the measurement of soil CO2 production.展开更多
Water biostability is of particular concern to water supply as a major limiting factor for heterotrophic bacterial growth in water distribution systems. This study focused on bacterial growth dynamics in the series di...Water biostability is of particular concern to water supply as a major limiting factor for heterotrophic bacterial growth in water distribution systems. This study focused on bacterial growth dynamics in the series dilution of water samples with TOC(total organic carbon) values determined beforehand. The results showed that the specific growth rate of Pseudomonas fluorescens P17 varied dramatically and irregularly with TOC value when TOC concentrations were low enough during the initial periods of incubation under given conditions. According to this relationship between bacterial growth rate and TOC, a dilution incubation method was designed for the study of water biostability. With the method under a given condition, a turning-point TOC value was found at a relatively fixed point in the curve between bacterial growth rate and TOC of water sample, and the variation of growth rate had different characteristics below the turning-point TOC value relative to that over this value. A turning-point TOC value similarly existed in all experiments not only with tap water, but also with acetate and mixed solutions. And in the dilution incubation method study, the affections were analyzed by condition factors such as inoculum amount,incubation time and nature of the organic carbon source. In very low organic carbon water environments, the variation characteristics of bacterial growth rate will be useful to further understand the meaning of water biostability.展开更多
基金supported by RFBR research (10-01-00810-a,11-01-00491-a,10-01-91154-GFEN a),Russian Federation State contracts and academic programs of the Russian Academy of Sciences
文摘The paper is discussing problems connected with embedment of the incubation time criterion for brittle fracture into finite element computational schemes. Incubation time fracture criterion is reviewed; practical questions of its numerical implementation are extensively discussed. Several examples of how the incubation time fracture criterion can be used as fracture condition in finite element computations are given. The examples include simulations of dynamic crack propagation and arrest, impact crater formation (i.e. fracture in initially intact media), spall fracture in plates, propagation of cracks in pipelines. Applicability of the approach to model initiation, development and arrest of dynamic fracture is claimed.
基金This paper was supported by National Natural Science Foundation of China (30471377), the Chinese Academy of Sciences (Knowledge Innovation Project KZCX3-SW-418), and the Institute of Applied Ecology of Chinese Academy of Sciences (SLYQY0409).
文摘The rates of soil N mineralization at soil depths of 0-15, 15-30, 30-45 and45-60 cm and moisture regimes were measured at three sand-fixation plantations of Pinus sylvestrisvar. mongolica by laboratory aerobic incubation method. The results showed that average rates ofsoil net N-mineralization across soil depth varied from 1.06 to 7.52 mg · kg^(-1)·month^(-1) atsoil depths from 0 to 60 cm. Statistical analyses indicated that the effects of different soildepths, moistures and their interactions on net N-mineralization rates were significant (P < 0.05).The net N-mineralization rates significantly decreased with increasing soil depths and at depth 0-15cm accounted for 60.52% of that at depth of 0-60 cm. There was no difference in soil netN-mineralization rates between half and fully-saturated water treatments, however these rates weresubstantially higher than that without water treatment (P < 0.05). The factors influencing Nmineralization process have to be studied further in these semiarid pine ecosystems.
基金Supported by the National Natural Science Foundation of China(Nos.40571087 and 40773057)the National Key Technologies Research and Development Program of China during the 11th Five-Year Plan Period(No.2007BAD89B02)
文摘The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbonates on CO2 emission from calcareous soil during closed-jar incubation, three incubation experiments were conducted by adding different types (CaCO3 and MgCO3) and amounts of carbonate to the soil. The addition of carbonates significantly increased CO2 emission from the soil; the increase ranged from 12.0~ in the CaCO3 amended soil to 460~0 in the MgCO3 amended soil during a 100-d incubation. Cumulative CO2 production at the end of the incubation was three times greater in the MgCO3 amended soil compared to the CaCO3 amended one. The CO2 emission increased with the amount of CaCO3 added to the soil. In contrast, CO2 emission decreased as the amount of MgCO3 added to the soil increased. Our results confirmed that the closed-jar incubation method could lead to an overestimate of organic C mineralization in calcareous soils. Because of its effect on soil pH and the dissolution of carbonates, HgC12 should not be used to sterili~.e calcareous soil if the experiment includes the measurement of soil CO2 production.
基金the National Natural Science Foundation of China for their financial support (No. 51378374)the Fundamental Research Funds for the Central Universities (No. 0400219207)
文摘Water biostability is of particular concern to water supply as a major limiting factor for heterotrophic bacterial growth in water distribution systems. This study focused on bacterial growth dynamics in the series dilution of water samples with TOC(total organic carbon) values determined beforehand. The results showed that the specific growth rate of Pseudomonas fluorescens P17 varied dramatically and irregularly with TOC value when TOC concentrations were low enough during the initial periods of incubation under given conditions. According to this relationship between bacterial growth rate and TOC, a dilution incubation method was designed for the study of water biostability. With the method under a given condition, a turning-point TOC value was found at a relatively fixed point in the curve between bacterial growth rate and TOC of water sample, and the variation of growth rate had different characteristics below the turning-point TOC value relative to that over this value. A turning-point TOC value similarly existed in all experiments not only with tap water, but also with acetate and mixed solutions. And in the dilution incubation method study, the affections were analyzed by condition factors such as inoculum amount,incubation time and nature of the organic carbon source. In very low organic carbon water environments, the variation characteristics of bacterial growth rate will be useful to further understand the meaning of water biostability.