The investigation of n-type doping holds a significant interest for the application of thermoelectrics.Herein,the doping of an indandione-terminated compound Q-4F with a singlet open-shell ground state was studied usi...The investigation of n-type doping holds a significant interest for the application of thermoelectrics.Herein,the doping of an indandione-terminated compound Q-4F with a singlet open-shell ground state was studied using two n-dopants N-DMBI and LCV.Both of these two dopants can effectively dope Q-4F due to the large offset between the singly occupied molecular orbital(SOMO)of dopants and the lowest unoccupied molecular orbital(LUMO)of Q-4F.N-DMBI has a higher doping ability than LCV as demonstrated by the UV-vis-NIR and EPR measurements.However,in comparison to N-DMBI doped Q-4F,LCV doped system exhibits much higher electrical conductivity and power factor due to its unperturbed molecular packing and favorable morphology after doping.The optimal conductivity of LCV doped Q-4F is 7.16×10^(-2)±0.16 S·cm^(-1) and the highest power factor reaches 12.3±0.85μW·m–1·K^(-2).These results demonstrate that the modulation of n-dopants is a powerful strategy to balance the doping efficiency and microstructure toward a maximum thermoelectric performance.展开更多
Comprehensive Summary Conjugated polymers(CPs)containing quinoidal units are promising in n-type organic thermoelectric materials because of their deep-positioned lowest unoccupied molecular orbital(LUMO)energy levels...Comprehensive Summary Conjugated polymers(CPs)containing quinoidal units are promising in n-type organic thermoelectric materials because of their deep-positioned lowest unoccupied molecular orbital(LUMO)energy levels and planar conjugated backbones.Herein,three CPs have been synthesized by copolymerizing an indandione-terminated quinoidal unit with bithiophene derivatives.Owning to the high electron affinity of the indandione-terminated quinoidal unit,all polymers showed deep LUMO energy levels below-4.10 eV.Incorporating electron-withdrawing substituents(F or CN)on the bithiophene comonomer can further downshift the LUMO energy levels.As a result,a more efficient n-doping process can be realized when employing 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine(N-DMBI)as the dopant.Ultimately,the polymer with CN substituents delivered the best thermoelectric performance with a power factor of up to 2.14μW·m^(−1)·K^(−2),because it possessed the lowest LUMO energy level among the three CPs.This work highlights that the modulation of LUMO energy level is an effective strategy to optimize the thermoelectric performance of CPs.展开更多
A palladium-catalyzed cascade cyclization of allenylethylene carbonates with 1,3-indandiones was developed, providing biologically interesting tetracyclic dihydrocyclopentaindenofuranone derivatives having three conti...A palladium-catalyzed cascade cyclization of allenylethylene carbonates with 1,3-indandiones was developed, providing biologically interesting tetracyclic dihydrocyclopentaindenofuranone derivatives having three contiguous quaternary carbon centers in moderate to high yields with excellent diastereoselectivities. In this reaction, the allene moiety was fully fused into the cyclopentene ring.展开更多
A versatile synthetic approach toward a series of benzothiazepines with medicinal potential (for example, compound <strong>1</strong>) that allows incorporation of structural variation at the three aromati...A versatile synthetic approach toward a series of benzothiazepines with medicinal potential (for example, compound <strong>1</strong>) that allows incorporation of structural variation at the three aromatic regions of the structure, and at the sulfur atom, was developed. Knoevenagel condensation of indan-1,3-diones with benzaldehydes, yielded 2-benzylidineindan-1,3-diones, which undewent thio-Michael addition and intramolecular imine formation upon reaction with 2-aminothiophenols, to produce the target benzothiazepines. Use of indan-1,3-diones, benzaldehydes or 2-aminothiophenols bearing further substitution enabled production of novel 5,11-dihydro-12H-benzo[b]indeno [1,2-e][1,4]thiazepin-12-one analogs <strong>1</strong> - <strong>14</strong>, including compounds bearing substitution at novel positions within the scaffold.展开更多
基金supported by the National Key R&D Program of China(2021YFA0717900)the National Natural Science Foundation of China(Nos.22222506,52073209,and 52121002)and the Fundamental Research Funds for the Central Universities.
文摘The investigation of n-type doping holds a significant interest for the application of thermoelectrics.Herein,the doping of an indandione-terminated compound Q-4F with a singlet open-shell ground state was studied using two n-dopants N-DMBI and LCV.Both of these two dopants can effectively dope Q-4F due to the large offset between the singly occupied molecular orbital(SOMO)of dopants and the lowest unoccupied molecular orbital(LUMO)of Q-4F.N-DMBI has a higher doping ability than LCV as demonstrated by the UV-vis-NIR and EPR measurements.However,in comparison to N-DMBI doped Q-4F,LCV doped system exhibits much higher electrical conductivity and power factor due to its unperturbed molecular packing and favorable morphology after doping.The optimal conductivity of LCV doped Q-4F is 7.16×10^(-2)±0.16 S·cm^(-1) and the highest power factor reaches 12.3±0.85μW·m–1·K^(-2).These results demonstrate that the modulation of n-dopants is a powerful strategy to balance the doping efficiency and microstructure toward a maximum thermoelectric performance.
基金supported by National Key R&D Program of China(2021YFA0717900)National Natural Science Foundation of China(52073209,52121002 and 22222506)the Fundamental Research Funds forthe Central Universities.
文摘Comprehensive Summary Conjugated polymers(CPs)containing quinoidal units are promising in n-type organic thermoelectric materials because of their deep-positioned lowest unoccupied molecular orbital(LUMO)energy levels and planar conjugated backbones.Herein,three CPs have been synthesized by copolymerizing an indandione-terminated quinoidal unit with bithiophene derivatives.Owning to the high electron affinity of the indandione-terminated quinoidal unit,all polymers showed deep LUMO energy levels below-4.10 eV.Incorporating electron-withdrawing substituents(F or CN)on the bithiophene comonomer can further downshift the LUMO energy levels.As a result,a more efficient n-doping process can be realized when employing 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine(N-DMBI)as the dopant.Ultimately,the polymer with CN substituents delivered the best thermoelectric performance with a power factor of up to 2.14μW·m^(−1)·K^(−2),because it possessed the lowest LUMO energy level among the three CPs.This work highlights that the modulation of LUMO energy level is an effective strategy to optimize the thermoelectric performance of CPs.
基金supported by the Natural Science Foundation of China(Nos.21871293 and 22071264)。
文摘A palladium-catalyzed cascade cyclization of allenylethylene carbonates with 1,3-indandiones was developed, providing biologically interesting tetracyclic dihydrocyclopentaindenofuranone derivatives having three contiguous quaternary carbon centers in moderate to high yields with excellent diastereoselectivities. In this reaction, the allene moiety was fully fused into the cyclopentene ring.
文摘A versatile synthetic approach toward a series of benzothiazepines with medicinal potential (for example, compound <strong>1</strong>) that allows incorporation of structural variation at the three aromatic regions of the structure, and at the sulfur atom, was developed. Knoevenagel condensation of indan-1,3-diones with benzaldehydes, yielded 2-benzylidineindan-1,3-diones, which undewent thio-Michael addition and intramolecular imine formation upon reaction with 2-aminothiophenols, to produce the target benzothiazepines. Use of indan-1,3-diones, benzaldehydes or 2-aminothiophenols bearing further substitution enabled production of novel 5,11-dihydro-12H-benzo[b]indeno [1,2-e][1,4]thiazepin-12-one analogs <strong>1</strong> - <strong>14</strong>, including compounds bearing substitution at novel positions within the scaffold.