期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Mechanism and Method of Testing Fracture Toughness and Impact Absorbed Energy of Ductile Metals by Spherical Indentation Tests
1
作者 Jianxun Li Tairui Zhang +2 位作者 Shang Wang Jirui Cheng Weiqiang Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期156-173,共18页
To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining ... To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408. 展开更多
关键词 Spherical indentation tests Fracture toughness CIE model Impact absorbed energy
下载PDF
A review of rock macro-indentation:Theories,experiments,simulations,and applications
2
作者 Weiqiang Xie Xiaoli Liu +2 位作者 Xiaoping Zhang Xinmei Yang Xiaoxiong Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2351-2374,共24页
Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been cond... Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been conducted to understand the indentation mechanisms and responses through various approaches.This review aims to provide an overview of the current status and recent advancements in theories,experiments,numerical simulations,and applications of macro-indentation in rock engineering.It starts with elaborating on the mechanisms of macro-indentation,followed by a discussion of the merits and limitations of commonly used models.Influence factors and their effects on indentation test results are then summarized.Various numerical simulation methods for rock macro-indentation are highlighted,along with their advantages and disadvantages.Subsequently,the applications of indentation tests and indentation indices in characterizing rock properties are explored.It reveals that compression-tension,compression-shear,and composite models are widely employed in rock macroindentation.While the compression-tension model is straightforward to use,it may overlook the anisotropic properties of rocks.On the other hand,the composite model provides a more comprehensive description of rock indentation but requires complex calculations.Additionally,factors,such as indentation rate,indenter geometry,rock type,specimen size,and confining pressure,can significantly influence the indentation results.Simulation methods for macro-indentation encompass continuous medium,discontinuous medium,and continuous-discontinuous medium methods,with selection based on their differences in principle.Furthermore,rock macro-indentation can be practically applied to mining engineering,tunneling engineering,and petroleum drilling engineering.Indentation indices serve as valuable tools for characterizing rock strength,brittleness,and drillability.This review sheds light on the development of rock macro-indentation and its extensive application in engineering practice.Specialists in the field can gain a comprehensive understanding of the indentation process and its potential in various rock engineering endeavors. 展开更多
关键词 Rock macro-indentation indentation test indentation indices MECHANISM Rock breaking
下载PDF
Comparative Study of Reverse Algorithms via Artificial Neural Networks Based on Simulated Indentation Tests
3
作者 Somsak Swaddiwudhipong Edy Harsono 《Tsinghua Science and Technology》 SCIE EI CAS 2008年第S1期393-399,共7页
The advances in the instrumented indentation equipments and the need to assess the properties of materials of small volume such as those constitute the micro-electro-mechanical devices, micro-electronic packages, and ... The advances in the instrumented indentation equipments and the need to assess the properties of materials of small volume such as those constitute the micro-electro-mechanical devices, micro-electronic packages, and thin films have propelled the interest in material characterization via indentation tests. The load-displacement curves and their characteristics, namely, the curvature of the loading path, C, and the ratio of the remaining and total work done, WR / WT, can be conveniently obtained from finite element simulations for various elasto-plastic material properties. The paper reports the comparative study on two reverse neural networks algorithms involving several combinations of databases established from the results obtained from simulated indentation tests. The performance of each set of results is analyzed and the most appropriate algorithm identified and reported. The approach with the selected neural networks model has great potential in practical applications on the characterization of a small volume of materials. 展开更多
关键词 artificial neural networks finite element simulation FRICTION least square support vector machines material characterization indentation tests
原文传递
Computer Simulation of the Indentation Creep Tests on Particle-Reinforced Composites
4
作者 Zhufeng YUE1,2)1)Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710072, China2)Institute of Materials, Ruhr University, 44780 Bochum, Germany 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期335-340,共6页
A systematical simulation has been carried out on the indentation creep test on particle-reinforced composites. The deformation, failure mechanisms and life are analyzed by three reasonable models. The following five ... A systematical simulation has been carried out on the indentation creep test on particle-reinforced composites. The deformation, failure mechanisms and life are analyzed by three reasonable models. The following five factors have been considered simultaneously: creep property of the particle, creep property of the matrix, the shape of the particle, the volume fraction of the particle and the size (relative size to the particle) of the indentation indenter. For all the cases, the power law respecting to the applied stress can be used to model the steady indentation creep depth rate of the indenter, and the detail expressions have been presented. The computer simulation precision is analyzed by the two-phase model and the three-phase model. Two places of the stress concentration are found in the composites. One is ahead of the indentation indenter, where the high stress state is deduced by the edge of the indenter and will decrease rapidly near to a steady value with the creep time. The other one is at the interface, where the high stress state is deduced by the misfit of material properties between the particles and matrix. It has been found that the creep dissipation energy density other than a stress parameter can be used to be the criterion to model the debonding of the interfaces. With the criterion of the critical creep dissipation energy density, a power law to the applied stress with negative exponent can be used to model the failure life deduced by the debonding of interfaces. The influences of the shape of the particles and the matching of creep properties of particle and matrix can be discussed for the failure. With a crack model, the further growth of interface crack is analyzed, and some important experimental phenomena can be predicted. The failure mechanism which the particle will be punched into matrix has been also discussed. The critical differences between the creep properties of the particles and matrix have been calculated, after a parameter has been defined. In the view of competition of failure mechanisms, the best matching of the creep properties of the two phases and the best shape of the particles are discussed for the composite design. 展开更多
关键词 indentation creep test Particle-reinforced composites Computer simulation DEFORMATION FAILURE
下载PDF
Experimental investigation on hard rock fragmentation of inserted tooth cutter using a newly designed indentation testing apparatus 被引量:3
5
作者 Jiuqun Zou Weihao Yang +2 位作者 Tao Zhang Xiaofei Wang Min Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期459-470,共12页
This investigation aims to explore the effects of stress conditions and rock cutting rates on hard rock fragmentation through indentation tests on a newly designed triaxial testing apparatus.This apparatus was designe... This investigation aims to explore the effects of stress conditions and rock cutting rates on hard rock fragmentation through indentation tests on a newly designed triaxial testing apparatus.This apparatus was designed to realize a triaxial loading and indentation test of cylindrical specimens using inserted tooth cutter.The boreability and crushing efficiency of granite rock was investigated by analyzing the change rules of the thrusting force,penetration depth,characteristics of chippings and failure patterns.Several quantitative indexes were used to evaluate rock boreability in this investigation.The granite rock samples all had a chiselled pit and a crushed rock core.Under initial stress conditions,only flat-shape chippings were stripped from the rock surface when the thrusting force reached 20 kN.The rock cutting special energy had a close correlation with the initial stress conditions and inserted tooth shape.Moreover,a thrusting force prediction model was proposed in this paper.The contribution of this study is that for the first time the influence mechanism of the initial triaxial stress conditions on rock fragmentation is investigated using an inserted tooth and the newly designed testing apparatus.This study has a crucial importance for practical underground hard rock crushing in geoengineering. 展开更多
关键词 Hard rock indentation test Hard rock fragmentation Triaxial confined conditions New triaxial testing apparatus Inserted tooth cutter Cylindrical rock specimens
下载PDF
Determination of reduced Young s modulus of thin films using indentation test 被引量:1
6
作者 Wuzhu YAN Shifeng WEN Jun LIU Zhufeng YUE 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第6期468-480,共13页
The flat cylindrical indentation tests with different sizes of punch radius were investigated using finite element method (FEM) aimed to reveal the effect of punch size on the indentation behavior of the film/substr... The flat cylindrical indentation tests with different sizes of punch radius were investigated using finite element method (FEM) aimed to reveal the effect of punch size on the indentation behavior of the film/substrate system. Based on the FEM results analysis, two methods was proposed to separate film's reduced Young's modulus from a film/substrate system. The first method was based on a new weight function that quantifies film's and substrate's contributions to the overall mechanical properties of the film/substrate system in the flat cylindrical indentation test. The second method, a numerical approach, including fitting and extrapolation procedures was put forward. Both of the results from the two methods showed a reasonable agreement with the one input FE model. At last, the effect of maximum indentation depth and the surface micro-roughness of the thin film on the reduced Young's modulus of the film/substrate system were discussed. The methods proposed in the present study provide some new conceptions on evaluating other properties of thin films, e.g. creep, for which a flat-ended punch is also employed. 展开更多
关键词 indentation test Reduced Young's modulus Punch size effect Weight function Film/substrate system
下载PDF
New Inverse Method for Determining Uniaxial Flow Properties by Spherical Indentation Test 被引量:1
7
作者 Guoyao Chen Xiaocheng Zhang +3 位作者 Jiru Zhong Jin Shi Qiongqi Wang Kaishu Guan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期138-146,共9页
The spherical indentation test has been successfully applied to inversely derive the tensile properties of small regions in a non-destructive way.Current inverse methods mainly rely on extensive iterative calculations... The spherical indentation test has been successfully applied to inversely derive the tensile properties of small regions in a non-destructive way.Current inverse methods mainly rely on extensive iterative calculations,which yield a considerable computational costs.In this paper,a database method is proposed to determine tensile flow properties from a single indentation force-depth curves to avoid iterative simulations.Firstly,a database that contain numerous indentation force-depth curves is established by inputting varied Ludwic material parameters into the indentation finite elements model.Secondly,for a given experimental indentation curve,a mean square error(MSE)is designated to evaluate the deviation between the experimental curve and each curve in the database.Finally,the true stresses at a series of plastic strain can be acquired by analyzing these deviations.To validate this new method,three different steels,i.e.A508,2.25Cr1 Mo and 316L are selected.Both simulated indentation curves and experimental indentation curves are used as inputs of the database to inversely acquire the flow properties.The result indicates that the pro-posed approach provides impressive accuracy when simulated indentation curves are used,but is less accurate when experimental curves are used.This new method can derive tensile properties in a much higher efficiency compared with traditional inverse method and are therefore more adaptive to engineering application. 展开更多
关键词 Spherical indentation test Database method Uniaxial stress-strain relationship
下载PDF
DETERMINATION OF CREEP PARAMETERS FROM INDENTATION CREEP EXPERIMENTS 被引量:1
8
作者 岳珠峰 万建松 吕震宙 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第3期307-317,共11页
The possibilities of determining creep parameters for a simple Norton law material are explored from indentation creep testing. Using creep finite element analysis the creep indentation test technique is analyzed in t... The possibilities of determining creep parameters for a simple Norton law material are explored from indentation creep testing. Using creep finite element analysis the creep indentation test technique is analyzed in terms of indentation rates at constant loads. Emphasis is placed on the relationships between the steady creep behavior of indentation systems and the creep property of the indented materials. The role of indenter geometry, size effects and macroscopic constraints is explicitly considered on indentation creep experiments. The influence of macroscopic constraints from the material systems becomes important when the size of the indenter is of the same order of magnitude as the size of the testing material. Two methods have been presented to assess the creep property of the indented material from the indentation experimental results on the single-phase-material and two-phase-material systems. The results contribute to a better mechanical understanding and extending the application of indentation creep testing. 展开更多
关键词 indentation creep testing finite element creep stress analysis determination of creep parameters single-phase-material system two-phase-material system
下载PDF
Interface fracture toughness and fracture mechanisms of thermal barrier coatings investigated by indentation test and acoustic emission technique 被引量:1
9
作者 Han Jiceng Guo Ping +2 位作者 Luo Jianxia Zhang Zhichao Li Qiang 《China Welding》 EI CAS 2016年第3期63-70,共8页
Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test ( HT) in combination with acoustic emission ( AE ) measur... Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test ( HT) in combination with acoustic emission ( AE ) measurement. Critical load and AE energy were employed to calculate interface fracture toughness. The critical point at which crack appears at the interface was determined by the HT. AE signals produced during total indentation test not only are used to investigate the interface cracking behavior by Fast Fourier Transform (FFT) and wavelet transforms but also supply the mechanical information. The result shows that the AE signals associated with coating plastic deformation during indentation are of a more continuous type with a lower characteristic frequency content (30 -60 kHz) , whereas the instantaneous relaxation associated with interface crack initiation produces burst type AE signals with a characteristic frequency in the range 70 - 200 kHz. The AE signals energy is concentrated on different scales for the coating plastic deformation, interface crack initiation and interface crack propagation. Interface fracture toughness calculated by AE energy was 1. 19 MPam1/2 close to 1.58 MPam1/2 calculated by critical load. It indicates that the acoustic emission energy is suitable to reflect the interface fracture toughness. 展开更多
关键词 thermal barrier coating acoustic emission interface indentation test interface fracture toughness
下载PDF
Finite element and experimental analysis of Vickers indentation testing on Al_2O_3 with diamond-like carbon coating
10
作者 ZHAI Jian-guang WANG Yi-qi +1 位作者 KIM Tae-gyu SONG Jung-il 《Journal of Central South University》 SCIE EI CAS 2012年第5期1175-1181,共7页
Numerical simulation and experimental study of the Vickers indentation testing of the Al2O3 ceramic coated by diamond-like carbon(DLC) layer were conducted.The numerical analysis was implemented by a two-dimensional f... Numerical simulation and experimental study of the Vickers indentation testing of the Al2O3 ceramic coated by diamond-like carbon(DLC) layer were conducted.The numerical analysis was implemented by a two-dimensional finite element(FE) axis symmetry model.FE analysis results gave insight into the fracture mechanism of DLC films coated on brittle ceramic(Al2O3) substrates.The maximum principal stress field was used to locate the most expected area for crack formation and propagation during the Vickers indentation testing.The results show that the median crack initiates in the interface under indenter,before ring crack occurs as the indenter presses down.Finally,the plastic deformation appears when the indenter penetrates into the substrate.The thicker DLC coating increases the Vickers hardness and fracture toughness. 展开更多
关键词 Vickers indentation testing finite element diamond-like carbon AL2O3 fracture toughness
下载PDF
DETERMINATION OF CREEP PROPERTIES OF THERMAL BARRIER COATING(TBC)SYSTEMS FROM THE INDENTATION CREEP TESTING WITH ROUND FLAT INDENTERS
11
作者 B.Zhao B.X.Xu +1 位作者 J.Liu Z.F.Yue 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期503-508,共6页
Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rat... Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rate for each case studied for different creep properties of the TBC system. The steady creep depth rate depends on the applied indentation creep stress and size of the indenters as well as the creep properties of the bond coat of the TBC and the substrate. The possibilities to determine the creep properties of a thermal barrier system from indention creep testing were discussed. As an example, with two different size indenters, the creep properties of bond coat of the TBC system can be derived by an inverse FEM method. This study not only provides a numerical method to obtain the creep properties of the TBC system, but also extends the application of indentation creep method with cylindrical flat indenters. 展开更多
关键词 thermal barrier coating (TBC) system indention creep testing finite element creep analysis determination of creep parameters bond coat
下载PDF
Numerical Evaluation of Strength in the Interface during Indentation Spherical Testing in Thin Films
12
作者 Rodrigo Araújo Avelino Manuel da Silva Dias 《Materials Sciences and Applications》 2014年第3期149-157,共9页
The need for more components that are more resistant to wear and corrosion has promoted a growing interest in surface engineering. The search for improved tribological properties in materials contributes to the develo... The need for more components that are more resistant to wear and corrosion has promoted a growing interest in surface engineering. The search for improved tribological properties in materials contributes to the development of processes that extend the useful life of components and their applications in increasingly severe environments. In this respect, thin ceramic coatings have been used to enhance the tribological properties of components that operate under these conditions. However, new experimental assays are needed to assess the behaviour of these films and their surface as substrate. These experimental analyses require the use of sophisticated equipment and specialized personnel. On the other hand, with advances in computational mechanics, the application of numerical analysis to solve numerous technological problems has been increasingly frequent, owing to its low operational costs. This study aims to simulate an indentation assay with spherical penetrator in systems composed of thin ceramic film deposited on metallic substrate using a Finite Element commercial code. The main objective of this study was to evaluate the field behaviour of stresses in the contact region of the indenter with the sample, on the outline of the impression made by the penetrator and, primarily, on the film-substrate interface. 展开更多
关键词 Finite Elements indentation Test Thin Films
下载PDF
A Reverse Numerical Approach to Determine Elastic-plastic Properties of Multi-layer Material Systems with Flat Cylindrical Indenters 被引量:1
13
作者 Baoxing XU Zhufeng YUE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第5期707-712,共6页
In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extrac... In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extracting the yield stresses and strain-hardening modulus of upper and middle-layers of three-layer material systems from the indentation testing. The slope of the indentation depth to the applied indentation stress curve was found to have a turning point, which can be used to determine the yield stress of the upper-layer. Then, a different method was also presented to determine the yield stress of the middle-layer. This method was based on a set of assumed applied indentation stresses which were to be intersected by the experimental results in order to meet the requirement of having the experimental indentation depth. At last, a reverse numerical algorithm was explored to determine the yield stresses of upper and middle-layers simultaneously by using the indentation testing with two different size indenters. This method assumed two ranges of yield stresses to simulate the indentation behavior. The experimental depth behavior was used to intersect the simulated indentation behavior. And the intersection corresponded to the values of yield stresses of upper and middle-layers. This method was also used further to determine the strain-hardening modulus of upper and middle-layers simultaneously. 展开更多
关键词 Multi-layer material systems indentation testing Finite element method (FEM) Yield stress Strain-hardening modulus
下载PDF
EFFECTS OF STATIC ELECTRIC FIELD ON THE FRACTURE BEHAVIOR OF PIEZOELECTRIC CERAMICS 被引量:1
14
作者 Tong-Yi Zhang (Department of Mechanical Engineering,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong,China) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2002年第5期537-550,共14页
The paper gives an overview on experimental observations of the failure behavior of electrically insulating and conducting cracks in piezoelectric ce- ramics.The experiments include the indentation fracture test,the b... The paper gives an overview on experimental observations of the failure behavior of electrically insulating and conducting cracks in piezoelectric ce- ramics.The experiments include the indentation fracture test,the bending test on smooth samples,and the fracture test on pre-notched(or pre-cracked)compact ten- sion samples.For electrically insulating cracks,the experimental results show a com- plicated fracture behavior under electrical and mechanical loading.Fracture data are much scattered when a static electric field is applied.A statistically based frac- ture criterion is required.For electrically conducting cracks,the experimental results demonstrate that static electric fields can fracture poled and depoled lead zirconate titanate ceramics and that the concepts of fracture mechanics can be used to mea- sure the electrical fracture toughness.Furthermore,the electrical fracture toughness is much higher than the mechanical fracture toughness.The highly electrical fracture toughness arises from the greater energy dissipation around the conductive crack tip under purely electric loading,which is impossible under mechanical loading in the brittle ceramics. 展开更多
关键词 FRACTURE piezoelectric and dielectric ceramics insulating and conducting cracks bending tests indentation fracture tests
下载PDF
Disc-cutter induced rock breakage mechanism for TBM excavation in rock masses with different joint shear strengths
15
作者 Bolong Liu Bo Li +4 位作者 Liang Zhang Rui Huang Huicai Gao Shilin Luo Tao Wang 《Underground Space》 SCIE EI CSCD 2024年第6期119-137,共19页
When tunnel boring machines(TBMs)excavate through jointed rock masses,the cutting efficiency is strongly affected by the shear strength of joints,the mechanism of which,however,remains poorly understood.In this study,... When tunnel boring machines(TBMs)excavate through jointed rock masses,the cutting efficiency is strongly affected by the shear strength of joints,the mechanism of which,however,remains poorly understood.In this study,a series of disc-cutter indentation tests were conducted on granite rock mass specimens with different joint shear strengths.During the indentation,the cracking process was recorded by a digital image correlation(DIC)system.The deformation and strength of specimens,cracking behavior,rock breakage mode and cutting efficiency were quantitatively investigated.In addition,to investigate the combined effects of joint shear strength,orientation and spacing on the rock breakage mechanism,numerical rock mass models were established based on a particle flow code PFC2D.Experimental results reveal that the cracking of primary and secondary cracks changes from the mixed shear-tensile to tensile mode in the initial stage,while the joint shear strength does not affect the cracking mode in the subsequent propagation process.The rock breakage mode is classified to an internal block breakage mode,a cross-joint breakage mode and a cutters-dependent breakage mode.The cross-joint breakage mode is optimal for improving the cutting efficiency.Numerical simulation results reveal that the increase in the joint shear strength changes the internal block breakage mode to cross-joint breakage mode for rock masses of particular ranges of joint orientation and spacing.These findings provide basis for improving the TBM cutting efficiency through jointed rock masses. 展开更多
关键词 indentation test Joint shear strength Disc cutter Rock breakage mechanism Cutting efficiency
原文传递
Effect of interfacial delamination on coating crack in thick diamond-like carbon coatings under indentation 被引量:1
16
作者 Zhongbao Wang Xiangli Zhong +5 位作者 Limei Jiang Fugang Qi Xiaoping Ouyang Jinbin Wang Bin Liao Jun Luo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第2期524-535,共12页
Coating crack and interfacial delamination are recognized as two critical factors inducing spallation of thick diamond-like carbon(DLC)coatings.The effect of the two factors is found to dramatically accelerate the fai... Coating crack and interfacial delamination are recognized as two critical factors inducing spallation of thick diamond-like carbon(DLC)coatings.The effect of the two factors is found to dramatically accelerate the failure of thick DLC coatings.However,there are few reports on the effect of interfacial delamination on coating crack.In this work,in order to investigate the evolution of the coating crack and interfacial delamination,as well as the effect of interfacial delamination on coating crack,a finite element model that combines the bilinear cohesive zone model and the extended finite element method(XFEM)is established.It is found that the occurrence of interfacial delamination triggers a second expansion of coating crack.Factors influencing the degree of interfacial delamination on coating crack can be modulated by coating thickness and coating elastic modulus.As the coating thickness increases,the length of interfacial delamination increases,and thus the propagation of coating crack is accelerated.In contrast,the increase of coating elastic modulus could reduce the length of interfacial delamination,which consequently weakens its influence on the propagation of coating crack. 展开更多
关键词 Coating crack Interfacial delamination Interaction indentation test Cohesive zone model
原文传递
Characterizing dynamic load propagation in cohesionless granular packing using force chain 被引量:1
17
作者 Longlong Fu Shunhua Zhou +1 位作者 Yuexiao Zheng Li Zhuang 《Particuology》 SCIE EI CAS CSCD 2023年第10期135-148,共14页
When dynamic load is applied on a granular assembly,the time-dependent dynamic load and initial static load(such as gravity stress)act together on individual particles.In order to better understand how dynamic load tr... When dynamic load is applied on a granular assembly,the time-dependent dynamic load and initial static load(such as gravity stress)act together on individual particles.In order to better understand how dynamic load triggers the micro-structure's evolution and furtherly the ensemble behavior of a granular assembly,we propose a criterion to recognize the major propagation path of dynamic load in 2D granular materials,called the“dynamic force chain”.Two steps are involved in recognizing dynamic force chains:(1)pick out particles with dynamic load larger than the threshold stress,where the attenuation of dynamic stress with distance is considered;(2)among which quasi-linear arrangement of three or more particles are identified as a force chain.The spatial distribution of dynamic force chains in indentation of granular materials provides a direct measure of dynamic load diffusion.The statistical evolution of dynamic force chains shows strong correlation with the indentation behaviors. 展开更多
关键词 Granular materials indentation test Cyclic load Dynamic force chain Coherent propagation
原文传递
Insights into in-situ TiB/dual-phase Ti alloy interface and its high load-bearing capacity 被引量:2
18
作者 Qi An Lujun Huang +5 位作者 Qi Qian Yong Jiang Shuai Wang Rui Zhang Lin Geng Liqin Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第24期156-166,共11页
To better understand the strengthening mechanism of in-situ formed TiB reinforcements in dual-phase Ti6 Al4 V alloy,the interface characters and properties ofα-Ti/β-Ti/TiB system were thoroughly investigated with th... To better understand the strengthening mechanism of in-situ formed TiB reinforcements in dual-phase Ti6 Al4 V alloy,the interface characters and properties ofα-Ti/β-Ti/TiB system were thoroughly investigated with the combined use of high-resolution transmission electron microscopy(HRTEM),abinitio calculations,and indentation tests.The ab-initio calculations suggest that the highly coherent(100)_(TiB)/(121)_(β-Ti)phase boundary(PB)has fairly low interface energy of 0.082 J/m^(2)with an exceptionally high adhesion strength of 6.04 J/m^(2),owing to the formation of strong interfacial Ti–B ionic bonds.The semi-coherent(201)_(TiB)/(0001)_(α-Ti)interface shows a relatively higher interface energy of 1.442 J/m^(2)but still with a fairly high adhesion strength of 4.95 J/m^(2).With the obtained interfacial energetics,thermodynamics analyses were further carried out to explore the nucleation mechanism ofα-Ti in TiB reinforced Ti6Al4V composite.Superior to the heterogeneous nucleation at TiB/β-Ti interface,the homogeneous nucleation ofα-Ti within theβ-Ti phase can be more energy-preferred,due to its lower nucleation energy barrier and critical radius.Further indentation tests under various loads of different modes confirmed a remarkably enhanced load-bearing capacity of dual-phase Ti6Al4V alloys,under the critical significance of the strong interfacial bonding achieved by reinforcements of in-situ formed TiB. 展开更多
关键词 Dual-phase Ti6Al4V alloy In-situ TiB INTERFACE Ab-initio calculation indentation test
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部