In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protoc...In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.展开更多
Similar to device-independent quantum key distribution (DI-QKD), semi-device-independent quantum key distribu- tion (SDI-QKD) provides secure key distribution without any assumptions about the internal workings of...Similar to device-independent quantum key distribution (DI-QKD), semi-device-independent quantum key distribu- tion (SDI-QKD) provides secure key distribution without any assumptions about the internal workings of the QKD devices. The only assumption is that the dimension of the Hilbert space is bounded. But SDI-QKD can be implemented in a one- way prepare-and-measure configuration without entanglement compared with DI-QKD. We propose a practical SDI-QKD protocol with four preparation states and three measurement bases by considering the maximal violation of dimension witnesses and specific processes of a QKD protocol. Moreover, we prove the security of the SDI-QKD protocol against collective attacks based on the min-entropy and dimension witnesses. We also show a comparison of the secret key rate between the SDI-QKD protocol and the standard QKD.展开更多
On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from...On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from multi-photon problem brought from photon splitter number attacks.On the other hand,the orbital angular momentum(OAM)-MDI-QKD protocol does not need to compare and adjust the reference frame,solving the dependency of the base in the MDI-QKD protocol.Given that,we propose the OAM-MDI-QKD protocol based on the parametric light sources which mainly include single-photon-added-coherent(SPACS)and heralded single-photon sources(HSPS).Due to the stability of OAM and the participation of parametric light sources,the performance of MDI-QKD protocol gradually approaches the ideal situation.Numerical simulation shows that compared with WCP scheme,HSPS and SPACS schemes have increased the maximum secure transmission distance by 30 km and 40 km respectively.展开更多
Measurement-device-independent quantum cryptographic conferencing(MDI-QCC) protocol puts MDI quantum key distribution(MDI-QKD) forwards to multi-party applications, and suggests a significant framework for practic...Measurement-device-independent quantum cryptographic conferencing(MDI-QCC) protocol puts MDI quantum key distribution(MDI-QKD) forwards to multi-party applications, and suggests a significant framework for practical multi-party quantum communication. In order to mitigate the experimental complexity of MDI-QCC and remove the key assumption(the sources are trusted) in MDI-QCC, we extend the framework of MDI-QKD with an untrusted source to MDI-QCC and give the rigorous security analysis of MDI-QCC with an untrusted source. What is more, in the security analysis we clearly provide a rigorous analytical method for parameters' estimation, which with simple modifications can be applied to not only MDI-QKD with an untrusted source but also arbitrary multi-party communication protocol with an untrusted source. The simulation results show that at reasonable distances the asymptotic key rates for the two cases(with trusted and untrusted sources) almost overlap, which indicates the feasibility of our protocol.展开更多
The effects of weather conditions are ubiquitous in practical wireless quantum communication links.Here in this work,the performances of atmospheric continuous-variable measurement-device-independent quantum key distr...The effects of weather conditions are ubiquitous in practical wireless quantum communication links.Here in this work,the performances of atmospheric continuous-variable measurement-device-independent quantum key distribution(CV-MDI-QKD)under diverse weather conditions are analyzed quantitatively.According to the Mie scattering theory and atmospheric CV-MDI-QKD model,we numerically simulate the relationship between performance of CV-MDI-QKD and the rainy and foggy conditions,aiming to get close to the actual combat environment in the future.The results show that both rain and fog will degrade the performance of the CV-MDI-QKD protocol.Under the rainy condition,the larger the raindrop diameter,the more obvious the extinction effect is and the lower the secret key rate accordingly.In addition,we find that the secret key rate decreases with the increase of spot deflection distance and the fluctuation of deflection.Under the foggy condition,the results illustrate that the transmittance decreases with the increase of droplet radius or deflection distance,which eventually yields the decrease in the secret key rate.Besides,in both weather conditions,the increase of transmission distance also leads the secret key rate to deteriorate.Our work can provide a foundation for evaluating the performance evaluation and successfully implementing the atmospheric CV-MDI-QKD in the future field operation environment under different weather conditions.展开更多
Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). ...Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is 〈 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection.展开更多
With the vigorous development of inland river shipping economy,the trend of large ships passing Nanjing Yangtze River Bridge is obvious.The standard formula of ship collision force is selected by comparing the empiric...With the vigorous development of inland river shipping economy,the trend of large ships passing Nanjing Yangtze River Bridge is obvious.The standard formula of ship collision force is selected by comparing the empirical calculation formulas.Four representative ship types are selected for calculation and analyzing of collision force.It is concluded that the anti-collision ability of the Nanjing Yangtze River Bridge does not meet the requirement of large ship collision force when the speed is more than 8-knots.From the perspective of active collision avoidance,this paper puts forward the navigation safety supervision countermeasures.A conceptual model of guided pulley anti-collision device is designed from the perspective of passive anti-collision.The research results provide references for safety supervision and anti-collision measures for the bridge.展开更多
Security in communication is vital in modern life. At present, security is realized by an encryption process in cryptography. It is unbelievable if a secure communication is achievable without encryption. In quantum c...Security in communication is vital in modern life. At present, security is realized by an encryption process in cryptography. It is unbelievable if a secure communication is achievable without encryption. In quantum cryptography, there is a unique form of quantum communication, quantum secure direct communication, where secret information is transmitted directly over a quantum channel. Quantum secure direct communication is drastically distinct from our conventional concept of secure communication, because it does not require key distribution, key storage and ciphertext transmission, and eliminates the encryption procedure completely. Hence it avoids in principle all the security loopholes associated with key and ciphertext in traditional secure communications. For practical implementation, defects always exist in real devices and it may downgrade the security. Among the various device imperfections, those with the measurement devices are the most prominent and serious ones. Here we report a measurementdevice-independent quantum secure direct communication protocol using Einstein-Podolsky-Rosen pairs. This protocol eradicates the security vulnerabilities associated with the measurement device,and greatly enhances the practical security of quantum secure direct communication. In addition to the security advantage, this protocol has an extended communication distance, and a high communication capacity.展开更多
Quantum random number generators(QRNGs)can provide genuine randomness by exploiting the intrinsic probabilistic nature of quantum mechanics,which play important roles in many applications.However,the true randomness a...Quantum random number generators(QRNGs)can provide genuine randomness by exploiting the intrinsic probabilistic nature of quantum mechanics,which play important roles in many applications.However,the true randomness acquisition could be subjected to attacks from untrusted devices involved or their deviations from the theoretical modeling in real-life implementation.We propose and experimentally demonstrate a source-device-independent QRNG,which enables one to access true random bits with an untrusted source device.The random bits are generated by measuring the arrival time of either photon of the time–energy entangled photon pairs produced from spontaneous parametric downconversion,where the entanglement is testified through the observation of nonlocal dispersion cancellation.In experiment,we extract a generation rate of 4 Mbps by a modified entropic uncertainty relation,which can be improved to gigabits per second by using advanced single-photon detectors.Our approach provides a promising candidate for QRNGs with no characterization or error-prone source devices in practice.展开更多
Reference frame independent and measurement device independent quantum key distribution(RFI-MDI-QKD)has the advantages of being immune to detector side loopholes and misalignment of the reference frame.However,several...Reference frame independent and measurement device independent quantum key distribution(RFI-MDI-QKD)has the advantages of being immune to detector side loopholes and misalignment of the reference frame.However,several former related research works are based on the unrealistic assumption of perfect source preparation.In this paper,we merge a loss-tolerant method into RFI-MDI-QKD to consider source flaws into key rate estimation and compare it with quantum coin method.Based on a reliable experimental scheme,the joint influence of both source flaws and reference frame misalignment is discussed with consideration of the finite-key effect.The results show that the loss-tolerant RFI-MDI-QKD protocol can reach longer key rate performance while considering the existence of source flaws in a real-world implementation.展开更多
"Device-independent"not only represents a relaxation of the security assumptions about the internal working of the quantum devices,but also can enhance the security of the quantum communication.In the paper,..."Device-independent"not only represents a relaxation of the security assumptions about the internal working of the quantum devices,but also can enhance the security of the quantum communication.In the paper,we put forward the first device-independent quantum secure direct communication(DIQSDC)protocol and analyze its security and communication efficiency against collective attacks.Under practical noisy quantum channel condition,the photon transmission loss and photon state decoherence would reduce DI-QSDC’s communication quality and threaten its absolute security.For solving the photon transmission loss and decoherence problems,we adopt noiseless linear amplification(NLA)protocol and entanglement purification protocol(EPP)to modify the DI-QSDC protocol.With the help of the NLA and EPP,we can guarantee DI-QSDC’s absolute security and effectively improve its communication quality.展开更多
Measurement device-independent quantum key distribution(MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with ...Measurement device-independent quantum key distribution(MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes.Increasing each individual photon’s channel capacity is an efficient way to increase the key generation rate, and high-dimensional(HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom(DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure,even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.展开更多
Recently, a novel reference-frame-independent measurement-device-independent quantum key distribution protocol was proposed, which can remove all detector side channels as well as tolerate unknown and slow variance of...Recently, a novel reference-frame-independent measurement-device-independent quantum key distribution protocol was proposed, which can remove all detector side channels as well as tolerate unknown and slow variance of reference frame without active alignment. In this paper, we propose a new tomographic method to estimate the key rate in that protocol. We estimate the key rate using conventional method and tomographic method respectively and compare the two methods by numerical simulation. The numerical simulation results show that tomographic approach is equivalent to the conventional approach, which can be used as an alternative method.展开更多
A measurement-device-independent quantum key distribution(MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party i...A measurement-device-independent quantum key distribution(MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61271238 and 61475075)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123223110003)+7 种基金the Natural Science Research Foundation for Universities of Jiangsu Province of China(Grant No.11KJA510002)the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network TechnologyMinistry of EducationChina(Grant No.NYKL2015011)the Innovation Program of Graduate Education of Jiangsu ProvinceChina(Grant No.KYLX0810)partially supported by Qinglan Project of Jiangsu ProvinceChina
文摘In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grant Nos.11304397 and 11204379)
文摘Similar to device-independent quantum key distribution (DI-QKD), semi-device-independent quantum key distribu- tion (SDI-QKD) provides secure key distribution without any assumptions about the internal workings of the QKD devices. The only assumption is that the dimension of the Hilbert space is bounded. But SDI-QKD can be implemented in a one- way prepare-and-measure configuration without entanglement compared with DI-QKD. We propose a practical SDI-QKD protocol with four preparation states and three measurement bases by considering the maximal violation of dimension witnesses and specific processes of a QKD protocol. Moreover, we prove the security of the SDI-QKD protocol against collective attacks based on the min-entropy and dimension witnesses. We also show a comparison of the secret key rate between the SDI-QKD protocol and the standard QKD.
基金Hong Lai has been supported by the National Natural Science Foundation of China(No.61702427)the Chongqing innovation project(No.cx2018076)+1 种基金the Fundamental Research Funds for the Central Universities(XDJK2018C048)the financial support in part by the 1000-Plan of Chongqing by Southwest University(No.SWU116007)。
文摘On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from multi-photon problem brought from photon splitter number attacks.On the other hand,the orbital angular momentum(OAM)-MDI-QKD protocol does not need to compare and adjust the reference frame,solving the dependency of the base in the MDI-QKD protocol.Given that,we propose the OAM-MDI-QKD protocol based on the parametric light sources which mainly include single-photon-added-coherent(SPACS)and heralded single-photon sources(HSPS).Due to the stability of OAM and the participation of parametric light sources,the performance of MDI-QKD protocol gradually approaches the ideal situation.Numerical simulation shows that compared with WCP scheme,HSPS and SPACS schemes have increased the maximum secure transmission distance by 30 km and 40 km respectively.
基金supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grant Nos.11304397 and 61505261)
文摘Measurement-device-independent quantum cryptographic conferencing(MDI-QCC) protocol puts MDI quantum key distribution(MDI-QKD) forwards to multi-party applications, and suggests a significant framework for practical multi-party quantum communication. In order to mitigate the experimental complexity of MDI-QCC and remove the key assumption(the sources are trusted) in MDI-QCC, we extend the framework of MDI-QKD with an untrusted source to MDI-QCC and give the rigorous security analysis of MDI-QCC with an untrusted source. What is more, in the security analysis we clearly provide a rigorous analytical method for parameters' estimation, which with simple modifications can be applied to not only MDI-QKD with an untrusted source but also arbitrary multi-party communication protocol with an untrusted source. The simulation results show that at reasonable distances the asymptotic key rates for the two cases(with trusted and untrusted sources) almost overlap, which indicates the feasibility of our protocol.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505261).
文摘The effects of weather conditions are ubiquitous in practical wireless quantum communication links.Here in this work,the performances of atmospheric continuous-variable measurement-device-independent quantum key distribution(CV-MDI-QKD)under diverse weather conditions are analyzed quantitatively.According to the Mie scattering theory and atmospheric CV-MDI-QKD model,we numerically simulate the relationship between performance of CV-MDI-QKD and the rainy and foggy conditions,aiming to get close to the actual combat environment in the future.The results show that both rain and fog will degrade the performance of the CV-MDI-QKD protocol.Under the rainy condition,the larger the raindrop diameter,the more obvious the extinction effect is and the lower the secret key rate accordingly.In addition,we find that the secret key rate decreases with the increase of spot deflection distance and the fluctuation of deflection.Under the foggy condition,the results illustrate that the transmittance decreases with the increase of droplet radius or deflection distance,which eventually yields the decrease in the secret key rate.Besides,in both weather conditions,the increase of transmission distance also leads the secret key rate to deteriorate.Our work can provide a foundation for evaluating the performance evaluation and successfully implementing the atmospheric CV-MDI-QKD in the future field operation environment under different weather conditions.
基金Project supported by the National Basic Research Program of China(Grants Nos.2011CBA00200 and 2011CB921200)the National Natural Science Foundation of China(Grant Nos.61201239,61205118,11304397,and 61475148)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB01030100 and XDB01030300)
文摘Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is 〈 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection.
文摘With the vigorous development of inland river shipping economy,the trend of large ships passing Nanjing Yangtze River Bridge is obvious.The standard formula of ship collision force is selected by comparing the empirical calculation formulas.Four representative ship types are selected for calculation and analyzing of collision force.It is concluded that the anti-collision ability of the Nanjing Yangtze River Bridge does not meet the requirement of large ship collision force when the speed is more than 8-knots.From the perspective of active collision avoidance,this paper puts forward the navigation safety supervision countermeasures.A conceptual model of guided pulley anti-collision device is designed from the perspective of passive anti-collision.The research results provide references for safety supervision and anti-collision measures for the bridge.
基金supported by the National Basic Research Program of China(2017YFA0303700 and 2015CB921001)the National Natural Science Foundation of China(61726801,11474168 and 11474181)the Beijing Advanced Innovation Center for Future Chip(ICFC)
文摘Security in communication is vital in modern life. At present, security is realized by an encryption process in cryptography. It is unbelievable if a secure communication is achievable without encryption. In quantum cryptography, there is a unique form of quantum communication, quantum secure direct communication, where secret information is transmitted directly over a quantum channel. Quantum secure direct communication is drastically distinct from our conventional concept of secure communication, because it does not require key distribution, key storage and ciphertext transmission, and eliminates the encryption procedure completely. Hence it avoids in principle all the security loopholes associated with key and ciphertext in traditional secure communications. For practical implementation, defects always exist in real devices and it may downgrade the security. Among the various device imperfections, those with the measurement devices are the most prominent and serious ones. Here we report a measurementdevice-independent quantum secure direct communication protocol using Einstein-Podolsky-Rosen pairs. This protocol eradicates the security vulnerabilities associated with the measurement device,and greatly enhances the practical security of quantum secure direct communication. In addition to the security advantage, this protocol has an extended communication distance, and a high communication capacity.
基金supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705000)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301500)+1 种基金the Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No. BK20192001)the National Natural Science Foundation of China (Grant Nos. 51890861 and 11974178).
文摘Quantum random number generators(QRNGs)can provide genuine randomness by exploiting the intrinsic probabilistic nature of quantum mechanics,which play important roles in many applications.However,the true randomness acquisition could be subjected to attacks from untrusted devices involved or their deviations from the theoretical modeling in real-life implementation.We propose and experimentally demonstrate a source-device-independent QRNG,which enables one to access true random bits with an untrusted source device.The random bits are generated by measuring the arrival time of either photon of the time–energy entangled photon pairs produced from spontaneous parametric downconversion,where the entanglement is testified through the observation of nonlocal dispersion cancellation.In experiment,we extract a generation rate of 4 Mbps by a modified entropic uncertainty relation,which can be improved to gigabits per second by using advanced single-photon detectors.Our approach provides a promising candidate for QRNGs with no characterization or error-prone source devices in practice.
基金supported by the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(No.IPOC2021ZT10)the National Natural Science Foundation of China(No.11904333)the Fundamental Research Funds for the Central Universities(No.2019XD-A02)。
文摘Reference frame independent and measurement device independent quantum key distribution(RFI-MDI-QKD)has the advantages of being immune to detector side loopholes and misalignment of the reference frame.However,several former related research works are based on the unrealistic assumption of perfect source preparation.In this paper,we merge a loss-tolerant method into RFI-MDI-QKD to consider source flaws into key rate estimation and compare it with quantum coin method.Based on a reliable experimental scheme,the joint influence of both source flaws and reference frame misalignment is discussed with consideration of the finite-key effect.The results show that the loss-tolerant RFI-MDI-QKD protocol can reach longer key rate performance while considering the existence of source flaws in a real-world implementation.
基金supported by the National Natural Science Foundation of China (11974189 and 11974205)the China Postdoctoral Science Foundation (2018M642293)+1 种基金the Open Research Fund of the Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications, Ministry of Education (JZNY201908)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘"Device-independent"not only represents a relaxation of the security assumptions about the internal working of the quantum devices,but also can enhance the security of the quantum communication.In the paper,we put forward the first device-independent quantum secure direct communication(DIQSDC)protocol and analyze its security and communication efficiency against collective attacks.Under practical noisy quantum channel condition,the photon transmission loss and photon state decoherence would reduce DI-QSDC’s communication quality and threaten its absolute security.For solving the photon transmission loss and decoherence problems,we adopt noiseless linear amplification(NLA)protocol and entanglement purification protocol(EPP)to modify the DI-QSDC protocol.With the help of the NLA and EPP,we can guarantee DI-QSDC’s absolute security and effectively improve its communication quality.
基金supported by the National Natural Science Foundation of China(Grant No.11974189)the China Postdoctoral Science Foundation(Grant No.2018M642293)+1 种基金the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education(Grant No.JZNY201908)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Measurement device-independent quantum key distribution(MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes.Increasing each individual photon’s channel capacity is an efficient way to increase the key generation rate, and high-dimensional(HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom(DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure,even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.
基金Supported by the National Basic Research Program of China under Grant Nos.2011CBA00200 and 2011CB921200the National Natural Science Foundation of China under Grant Nos.61475148,61575183the "Strategic Priority Research Program(B)" of the Chinese Academy of Sciences under Grant Nos.XDB01030100,XDB01030300
文摘Recently, a novel reference-frame-independent measurement-device-independent quantum key distribution protocol was proposed, which can remove all detector side channels as well as tolerate unknown and slow variance of reference frame without active alignment. In this paper, we propose a new tomographic method to estimate the key rate in that protocol. We estimate the key rate using conventional method and tomographic method respectively and compare the two methods by numerical simulation. The numerical simulation results show that tomographic approach is equivalent to the conventional approach, which can be used as an alternative method.
基金supported by the National Natural Science Foundation of China(No.61302099)
文摘A measurement-device-independent quantum key distribution(MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.