Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its ...Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its components in the case of multichannel measurements,such as independent component analysis(ICA).However,the source separation of vibration signal from single-channel is impossible.In order to study the source separation from single-channel signal for the purpose of source extraction,the combination method of empirical mode decomposition(EMD) and ICA is proposed in diesel engine signal processing.The performance of the described methods of EMD-wavelet and EMD-ICA in vibration signal application is compared,and the results show that EMD-ICA method outperforms the other,and overcomes the drawback of ICA in the case of single-channel measurement.The independent source signal components can be separated and identified effectively from one-channel measurement by EMD-ICA.Hence,EMD-ICA improves the extraction and identification abilities of source signals from diesel engine vibration measurements.展开更多
The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills...The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills and the accuracy of estimates of their size.We consider at-sea oil spills with zonal distribution in this paper and improve the traditional independent component analysis algorithm.For each independent component we added two constraint conditions:non-negativity and constant sum.We use priority weighting by higher-order statistics,and then the spectral angle match method to overcome the order nondeterminacy.By these steps,endmembers can be extracted and abundance quantified simultaneously.To examine the coverage of a real oil spill and correct our estimate,a simulation experiment and a real experiment were designed using the algorithm described above.The result indicated that,for the simulation data,the abundance estimation error is 2.52% and minimum root mean square error of the reconstructed image is 0.030 6.We estimated the oil spill rate and area based on eight hyper-spectral remote sensing images collected by an airborne survey of Shandong Changdao in 2011.The total oil spill area was 0.224 km^2,and the oil spill rate was 22.89%.The method we demonstrate in this paper can be used for the automatic monitoring of oil spill coverage rates.It also allows the accurate estimation of the oil spill area.展开更多
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals a...In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.展开更多
目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singula...目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。展开更多
Dissolved organic matter (DOM) can be originated from autochthonous or allochthonous sources, where allochthonous DOM can be from pedogenic sources (humic substances—HSs) or anthropogenicsources (wastewater). The ana...Dissolved organic matter (DOM) can be originated from autochthonous or allochthonous sources, where allochthonous DOM can be from pedogenic sources (humic substances—HSs) or anthropogenicsources (wastewater). The analysis of fluorescence emission, excitation, synchronous or excitation-emission matrix (EEM) have been used to identify the main source or probable contribution of dissolved compounds, such as humic acids (HA), fulvic acids (FA) and dissolved organic carbon (DOC) from sewage, but does not quantify. Fluorescence emission is a powerful technique to detect and qualify organic dissolved compounds but fails in quantitative aspects. In this work, we propose an in situ method for direct determination of DOC using synchronous fluorescence spectra with independent component analysis (ICA). Well known standard solutions were used for method development and validation. In this work, we show that it is possible to predict the number of independent contributions using an unsupervised method based on iterative Principal Component Analysis and Independent Component Analysis (PCA-ICA) approach over combined matrix results. Within these results it’s also possible to see that with a very small amount of independent components it is possible to describe environmental samples of HA, FA and primary productivity (PP).展开更多
BACKGROUND Major depression disorder(MDD)constitutes a significant mental health concern.Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults,wi...BACKGROUND Major depression disorder(MDD)constitutes a significant mental health concern.Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults,with a corresponding increased risk of suicide.In studying brain dysfunction associated with MDD in adolescents,research on brain white matter(WM)is sparse.Some researchers even mistakenly regard the signals generated by the WM as noise points.In fact,studies have shown that WM exhibits similar blood oxygen level-dependent signal fluctuations.The alterations in WM signals and their relationship with disease severity in adolescents with MDD remain unclear.AIM To explore potential abnormalities in WM functional signals in adolescents with MDD.METHODS This study involved 48 adolescent patients with MDD and 31 healthy controls(HC).All participants were assessed using the Patient Health Questionnaire-9 Scale and the mini international neuropsychiatric interview(MINI)suicide inventory.In addition,a Siemens Skyra 3.0T magnetic resonance scanner was used to obtain the subjects'image data.The DPABI software was utilized to calculate the WM signal of the fractional amplitude of low frequency fluctuations(fALFF)and regional homogeneity,followed by a two-sample t-test between the MDD and HC groups.Independent component analysis(ICA)was also used to evaluate the WM functional signal.Pearson’s correlation was performed to assess the relationship between statistical test results and clinical scales.RESULTS Compared to HC,individuals with MDD demonstrated a decrease in the fALFF of WM in the corpus callosum body,left posterior limb of the internal capsule,right superior corona radiata,and bilateral posterior corona radiata[P<0.001,family-wise error(FWE)voxel correction].The regional homogeneity of WM increased in the right posterior limb of internal capsule and left superior corona radiata,and decreased in the left superior longitudinal fasciculus(P<0.001,FWE voxel correction).The ICA results of WM overlapped with those of regional homogeneity.The fALFF of WM signal in the left posterior limb of the internal capsule was negatively correlated with the MINI suicide scale(P=0.026,r=-0.32),and the right posterior corona radiata was also negatively correlated with the MINI suicide scale(P=0.047,r=-0.288).CONCLUSION Adolescents with MDD involves changes in WM functional signals,and these differences in brain regions may increase the risk of suicide.展开更多
Functional magnetic resonance imaging (fMRI) has been used to lateralize and localize lan-guage areas for pre-operative planning pur-poses. To identify the essential language areas from this kind of observation method...Functional magnetic resonance imaging (fMRI) has been used to lateralize and localize lan-guage areas for pre-operative planning pur-poses. To identify the essential language areas from this kind of observation method, we pro-pose an analysis strategy to combine fMRI data from two different tasks using probabilistic in-dependent component analysis (PICA). The assumption is that the independent compo-nents separated by PICA identify the networks activated by both tasks. The results from a study of twelve normal subjects showed that a language-specific component was consistently identified, with the participating networks sepa-rated into different components. Compared with a model-based method, PICA’s ability to capture the neural networks whose temporal activity may deviate from the task timing suggests that PICA may be more appropriate for analyzing language fMRI data with complex event-related paradigms, and may be particularly helpful for patient studies. This proposed strategy has the potential to improve the correlation between fMRI and invasive techniques which can dem-onstrate essential areas and which remain the clinical gold standard.展开更多
A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis ...A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently devel- oped statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of mea- surements and it is a two-phase algorithm., whitened kernel principal component analysis (KPCA) plus indepen- dent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process in- dicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear rela- tionship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for lonu-term performance deterioration.展开更多
One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is propo...One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image deta and one-dimensional (l-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.展开更多
It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent...It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.展开更多
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50975192)Tianjin Municipal Natural Science Foundation of China (Grant No. 10YFJZJC14100)
文摘Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its components in the case of multichannel measurements,such as independent component analysis(ICA).However,the source separation of vibration signal from single-channel is impossible.In order to study the source separation from single-channel signal for the purpose of source extraction,the combination method of empirical mode decomposition(EMD) and ICA is proposed in diesel engine signal processing.The performance of the described methods of EMD-wavelet and EMD-ICA in vibration signal application is compared,and the results show that EMD-ICA method outperforms the other,and overcomes the drawback of ICA in the case of single-channel measurement.The independent source signal components can be separated and identified effectively from one-channel measurement by EMD-ICA.Hence,EMD-ICA improves the extraction and identification abilities of source signals from diesel engine vibration measurements.
基金Supported by the National Scientific Research Fund of China(No.31201133)
文摘The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills and the accuracy of estimates of their size.We consider at-sea oil spills with zonal distribution in this paper and improve the traditional independent component analysis algorithm.For each independent component we added two constraint conditions:non-negativity and constant sum.We use priority weighting by higher-order statistics,and then the spectral angle match method to overcome the order nondeterminacy.By these steps,endmembers can be extracted and abundance quantified simultaneously.To examine the coverage of a real oil spill and correct our estimate,a simulation experiment and a real experiment were designed using the algorithm described above.The result indicated that,for the simulation data,the abundance estimation error is 2.52% and minimum root mean square error of the reconstructed image is 0.030 6.We estimated the oil spill rate and area based on eight hyper-spectral remote sensing images collected by an airborne survey of Shandong Changdao in 2011.The total oil spill area was 0.224 km^2,and the oil spill rate was 22.89%.The method we demonstrate in this paper can be used for the automatic monitoring of oil spill coverage rates.It also allows the accurate estimation of the oil spill area.
基金supported by the National Science and Technology,China(Grant No.2012BAJ15B04)the National Natural Science Foundation of China(Grant Nos.41071270 and 61473213)+3 种基金the Natural Science Foundation of Hubei Province,China(Grant No.2015CFB424)the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics,China(Grant No.SOED1405)the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science,China(Grant No.Z201303)the Hubei Key Laboratory Foundation of Transportation Internet of Things,Wuhan University of Technology,China(Grant No.2015III015-B02)
文摘In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.
文摘目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。
文摘Dissolved organic matter (DOM) can be originated from autochthonous or allochthonous sources, where allochthonous DOM can be from pedogenic sources (humic substances—HSs) or anthropogenicsources (wastewater). The analysis of fluorescence emission, excitation, synchronous or excitation-emission matrix (EEM) have been used to identify the main source or probable contribution of dissolved compounds, such as humic acids (HA), fulvic acids (FA) and dissolved organic carbon (DOC) from sewage, but does not quantify. Fluorescence emission is a powerful technique to detect and qualify organic dissolved compounds but fails in quantitative aspects. In this work, we propose an in situ method for direct determination of DOC using synchronous fluorescence spectra with independent component analysis (ICA). Well known standard solutions were used for method development and validation. In this work, we show that it is possible to predict the number of independent contributions using an unsupervised method based on iterative Principal Component Analysis and Independent Component Analysis (PCA-ICA) approach over combined matrix results. Within these results it’s also possible to see that with a very small amount of independent components it is possible to describe environmental samples of HA, FA and primary productivity (PP).
基金Supported by the Suzhou Clinical Medical Center for Mood Disorders,No.Szlcyxzx202109Jiangsu Provincial Department of Science and Technology for Social Development-General Project,No.BE2022735.
文摘BACKGROUND Major depression disorder(MDD)constitutes a significant mental health concern.Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults,with a corresponding increased risk of suicide.In studying brain dysfunction associated with MDD in adolescents,research on brain white matter(WM)is sparse.Some researchers even mistakenly regard the signals generated by the WM as noise points.In fact,studies have shown that WM exhibits similar blood oxygen level-dependent signal fluctuations.The alterations in WM signals and their relationship with disease severity in adolescents with MDD remain unclear.AIM To explore potential abnormalities in WM functional signals in adolescents with MDD.METHODS This study involved 48 adolescent patients with MDD and 31 healthy controls(HC).All participants were assessed using the Patient Health Questionnaire-9 Scale and the mini international neuropsychiatric interview(MINI)suicide inventory.In addition,a Siemens Skyra 3.0T magnetic resonance scanner was used to obtain the subjects'image data.The DPABI software was utilized to calculate the WM signal of the fractional amplitude of low frequency fluctuations(fALFF)and regional homogeneity,followed by a two-sample t-test between the MDD and HC groups.Independent component analysis(ICA)was also used to evaluate the WM functional signal.Pearson’s correlation was performed to assess the relationship between statistical test results and clinical scales.RESULTS Compared to HC,individuals with MDD demonstrated a decrease in the fALFF of WM in the corpus callosum body,left posterior limb of the internal capsule,right superior corona radiata,and bilateral posterior corona radiata[P<0.001,family-wise error(FWE)voxel correction].The regional homogeneity of WM increased in the right posterior limb of internal capsule and left superior corona radiata,and decreased in the left superior longitudinal fasciculus(P<0.001,FWE voxel correction).The ICA results of WM overlapped with those of regional homogeneity.The fALFF of WM signal in the left posterior limb of the internal capsule was negatively correlated with the MINI suicide scale(P=0.026,r=-0.32),and the right posterior corona radiata was also negatively correlated with the MINI suicide scale(P=0.047,r=-0.288).CONCLUSION Adolescents with MDD involves changes in WM functional signals,and these differences in brain regions may increase the risk of suicide.
文摘Functional magnetic resonance imaging (fMRI) has been used to lateralize and localize lan-guage areas for pre-operative planning pur-poses. To identify the essential language areas from this kind of observation method, we pro-pose an analysis strategy to combine fMRI data from two different tasks using probabilistic in-dependent component analysis (PICA). The assumption is that the independent compo-nents separated by PICA identify the networks activated by both tasks. The results from a study of twelve normal subjects showed that a language-specific component was consistently identified, with the participating networks sepa-rated into different components. Compared with a model-based method, PICA’s ability to capture the neural networks whose temporal activity may deviate from the task timing suggests that PICA may be more appropriate for analyzing language fMRI data with complex event-related paradigms, and may be particularly helpful for patient studies. This proposed strategy has the potential to improve the correlation between fMRI and invasive techniques which can dem-onstrate essential areas and which remain the clinical gold standard.
基金The National Natural Science Foundation ofChina(No60504033)
文摘A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently devel- oped statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of mea- surements and it is a two-phase algorithm., whitened kernel principal component analysis (KPCA) plus indepen- dent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process in- dicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear rela- tionship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for lonu-term performance deterioration.
基金Supported by the 973 Project (No.2003CB716106), NSFC (No.90208003, 30200059), TRAPOYT, Doctor Training Fund of MOE, PRC, Key Research Project of Science and Technology of MOE, Fok Ying Tong Education Foundation (No.91041)
文摘One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image deta and one-dimensional (l-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.
基金This project is supported by National Natural Science Foundation of China (No.50275154) Municipal Natural Science Foundation of Chongqing, China (No.8773).
文摘It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.