The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,par...The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,particularly of heightened projects in the impoundment period.Herein,a new method for monitoring the safety status of heightened dams is proposed based on the deformation monitoring data of a dam structure,a statistical model,and finite-element numerical simulation.First,a fast optimization inversion method for estimation of dam mechanical parameters was developed,which used the water pressure component extracted from a statistical model,an improved inversion objective function,and a genetic optimization iterative algorithm.Then,a finite element model of a heightened concrete gravity dam was established,and the deformation behavior of the dam with rising water levels in the impoundment period was simulated.Subsequently,mechanical parameters of aged dam parts were calculated using the fast optimization inversion method with simulated deformation and the water pressure deformation component obtained by the statistical model under the same conditions of water pressure change.Finally,a new earlywarning index of dam deformation was constructed by means of the forward-simulated deformation and other components of the statistical model.The early-warning index is useful for forecasting dam deformation under different water levels,especially high water levels.展开更多
The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure ...The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure the warning condition that the enterprise faces and take the effective measures to eliminate. We criticize Altman’sZ calculating model and build up some new indexes for enterprise financial early-warning condition measuring and making sound decision.展开更多
By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ...By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.展开更多
The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as ...The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as agricultural outlook must be strengthened. In this study, we develop the China Agricultural Monitoring and Early-warning System (CAMES) on the basis of a comparative study of domestic and international agricultural outlook models. The system is a dynamic and multi-market partial equilibrium model that integrates biological mechanisms with economic mechanisms. This system, which includes 11 categories of 953 kinds of agricultural products, could dynamical y project agricultural market supply and demand, assess food security, and conduct scenario analysis at different spatial levels, time scale levels, and macro-micro levels. Based on the CAMES, the production, consumption, and trade of the major agricultural products in China over the next decade are projected. The fol owing conclusions are drawn:i) The production of major agricultural products wil continue to grow steadily, mainly because of the increase in yield. i ) The growth of agricultural consumption wil be slightly higher than that of agricultural production. Meanwhile, a high self-sufifciency rate is expected for cereals such as rice, wheat, and maize, with the rate being stable at around 97%. i i) Agricultural trade wil continue to thrive. The growth of soybean and milk im-ports wil slow down, but the growth of traditional agricultural exports such as vegetables and fruits is expected to continue.展开更多
The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so t...The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.展开更多
By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the tem...By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the temperature,humidity,wind direction,wind speed,air pressure and so on.The conceptual models of high-altitude and ground situation were established when the heavy fog happened in Chizhou City.Based on considering sufficiently the special geographical environment in Chizhou City,we found the key factors which affected the local heavy fog via the relative analyses.By using the statistical forecast methods which included the second-level judgment method and regression method of event probability and so on,the forecast mode equation of heavy fog was established.Moreover,the objective forecast system of heavy fog in Chizhou City was also manufactured.It provided the basis and platform which could be referred for the heavy fog forecast,service and the release of early-warning signal.展开更多
The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not suc...The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.展开更多
Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural ...Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters were differentiated into essential attributes and external characters, and its workflow mode was established on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk early-warning factors was determined with Information Entropy method, which improved standard risk early-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified the outcome could reflect more risk information than the method of standard DEA model, and reflected the rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure risk.展开更多
Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been ...Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been performed over the years on the biological properties, chemical characteristics, external environmental factors and other aspects of the virus, and some results have been achieved. Based on the chaos game representation walk model, this paper uses the time series analysis method to study the DNA sequences of the influenza virus from 1913 to 2010, and works out the early-warning signals indicator value for the outbreak of an influenza pandemic. The variances in the CCR wall〈 sequences for the pandemic years (or + -1 to 2 years) are significantly higher than those for the adjacent years, while those in the non-pandemic years are usually smaller. In this way we can provide an influenza early-warning mechanism so that people can take precautions and be well prepared prior to a pandemic.展开更多
According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destru...According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system’s performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention.展开更多
The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that ...The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that it can promptly deliver the early-warning information concerning some meteorological disasters(such as torrential rains,typhoons,cold wave,hail)to the areas affected,so as to provide reference and protection for agricultural production and effectively reduce the loss of agricultural producers.Up to now,the meteorological early-warning loudspeakers in Benxi have covered the villages.However,due to irregular occurrence of meteorological disasters,the listeners will turn off the information receivers of meteorological early-warning loudspeakers when they fail to receive meteorological information for a long time,so that the users can not promptly know the early-warning information regarding some sudden meteorological disasters.In view of this,the meteorological departments have introduced a series of management measures,such as the daily use of loudspeakers to publish weather forecast information,aimed at improving the online rate and usage rate of meteorological loudspeakers.And the management platform for online rate of meteorological early-warning loudspeakers is an important part of the management system.展开更多
As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their cu...As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their customer resources,it is crucial for banks to accurately predict customers with a tendency to churn.Aiming at the typical binary classification problem like customer churn,this paper establishes an early-warning model for credit card customer churn.That is a dual search algorithm named GSAIBAS by incorporating Golden Sine Algorithm(GSA)and an Improved Beetle Antennae Search(IBAS)is proposed to optimize the parameters of the CatBoost algorithm,which forms the GSAIBAS-CatBoost model.Especially,considering that the BAS algorithm has simple parameters and is easy to fall into local optimum,the Sigmoid nonlinear convergence factor and the lane flight equation are introduced to adjust the fixed step size of beetle.Then this improved BAS algorithm with variable step size is fused with the GSA to form a GSAIBAS algorithm which can achieve dual optimization.Moreover,an empirical analysis is made according to the data set of credit card customers from Analyttica official platform.The empirical results show that the values of Area Under Curve(AUC)and recall of the proposedmodel in this paper reach 96.15%and 95.56%,respectively,which are significantly better than the other 9 common machine learning models.Compared with several existing optimization algorithms,GSAIBAS algorithm has higher precision in the parameter optimization for CatBoost.Combined with two other customer churn data sets on Kaggle data platform,it is further verified that the model proposed in this paper is also valid and feasible.展开更多
Relying on the advanced information technologies, such as information monitoring, data mining, natural language processing etc., the dynamic technology early-warning system is constructed. The system consists of techn...Relying on the advanced information technologies, such as information monitoring, data mining, natural language processing etc., the dynamic technology early-warning system is constructed. The system consists of technology information automatic retrieval, technology information monitoring, technology threat evaluation, and crisis response and management subsystem, which implements uninterrupted dynamic monitoring, trace and crisis early-warning to the specific technology. Empirical study testifies that the system improves the accuracy, timeliness and reliability of technology early-warning.展开更多
To establish a financial early-warning model with high accuracy of discrimination and achieve the aim of long-term prediction, principal component analysis (PCA), Fisher discriminant, together with grey forecasting mo...To establish a financial early-warning model with high accuracy of discrimination and achieve the aim of long-term prediction, principal component analysis (PCA), Fisher discriminant, together with grey forecasting models are used at the same time. 110 A-share companies listed on the Shanghai and Shenzhen stock exchange are selected as research samples. And 10 extractive factors with 89.746% of all the original information are determined by applying PCA, which obtains the goal of dimension reduction without information loss. Based on the index system, the early-warning model is constructed according to the Fisher rules. And then the GM(1,1) is adopted to predict financial ratios in 2004, according to 40 testing samples from 2000 to 2003. Finally, two different methods, a self-validated and a forecasting-validated, are used to test the validity of the financial crisis warning model. The empirical results show that the model has better predictability and feasibility, and GM(1,1) contributes to the ability to make long-term predictions.展开更多
This article proposed the risk early-warning model of gas hazard based on Rough Set and neural network. The attribute quantity was reduced by Rough Set, the main characteristic attributes were withdrawn, the complexit...This article proposed the risk early-warning model of gas hazard based on Rough Set and neural network. The attribute quantity was reduced by Rough Set, the main characteristic attributes were withdrawn, the complexity of neural network system and the computing time was reduced, as well. Because of fault-tolerant ability, parallel processing ability, anti-jamming ability and processing non-linear problem ability of neural network system, the methods of Rough Set and neural network were combined. The examples research indicate: applying Rough Set and BP neural network to the gas hazard risk early-warning coal mines in coal mine, the BPNN structure is greatly simplified, the network computation quantity is reduced and the convergence rate is speed up.展开更多
BACKGROUND The incidence of chronic kidney disease among patients with diabetes mellitus(DM)remains a global concern.Long-term obesity is known to possibly influence the development of type 2 diabetes mellitus.However...BACKGROUND The incidence of chronic kidney disease among patients with diabetes mellitus(DM)remains a global concern.Long-term obesity is known to possibly influence the development of type 2 diabetes mellitus.However,no previous meta-analysis has assessed the effects of body mass index(BMI)on adverse kidney events in patients with DM.AIM To determine the impact of BMI on adverse kidney events in patients with DM.METHODS A systematic literature search was performed on the PubMed,ISI Web of Science,Scopus,Ovid,Google Scholar,EMBASE,and BMJ databases.We included trials with the following characteristics:(1)Type of study:Prospective,retrospective,randomized,and non-randomized in design;(2)participants:Restricted to patients with DM aged≥18 years;(3)intervention:No intervention;and(4)kidney adverse events:Onset of diabetic kidney disease[estimated glomerular filtration rate(eGFR)of<60 mL/min/1.73 m2 and/or microalbuminuria value of≥30 mg/g Cr],serum creatinine increase of more than double the baseline or end-stage renal disease(eGFR<15 mL/min/1.73 m2 or dialysis),or death.RESULTS Overall,11 studies involving 801 patients with DM were included.High BMI(≥25 kg/m2)was significantly associated with higher blood pressure(BP)[systolic BP by 0.20,95%confidence interval(CI):0.15–0.25,P<0.00001;diastolic BP by 0.21 mmHg,95%CI:0.04–0.37,P=0.010],serum albumin,triglycerides[standard mean difference(SMD)=0.35,95%CI:0.29–0.41,P<0.00001],low-density lipoprotein(SMD=0.12,95%CI:0.04–0.20,P=0.030),and lower high-density lipoprotein(SMD=–0.36,95%CI:–0.51 to–0.21,P<0.00001)in patients with DM compared with those with low BMIs(<25 kg/m2).Our analysis showed that high BMI was associated with a higher risk ratio of adverse kidney events than low BMI(RR:1.22,95%CI:1.01–1.43,P=0.036).CONCLUSION The present analysis suggested that high BMI was a risk factor for adverse kidney events in patients with DM.展开更多
Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r...Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.展开更多
The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara...The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.展开更多
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m...In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.展开更多
BACKGROUND Colorectal polyps(CPs)are frequently occurring abnormal growths in the colorectum,and are a primary precursor of colorectal cancer(CRC).The triglyceride-glucose(TyG)index is a novel marker that assesses met...BACKGROUND Colorectal polyps(CPs)are frequently occurring abnormal growths in the colorectum,and are a primary precursor of colorectal cancer(CRC).The triglyceride-glucose(TyG)index is a novel marker that assesses metabolic health and insulin resistance,and has been linked to gastrointestinal cancers.AIM To investigate the potential association between the TyG index and CPs,as the relation between them has not been documented.METHODS A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan,Jiangsu Province,China,between January 2020 and December 2022 were included in this retrospective cross-sectional study.After excluding individuals who did not meet the eligibility criteria,descriptive statistics were used to compare characteristics between patients with and without CPs.Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs.The TyG index was calculated using the following formula:Ln[triglyceride(mg/dL)×glucose(mg/dL)/2].The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports.RESULTS A nonlinear relation between the TyG index and the prevalence of CPs was identified,and exhibited a curvilinear pattern with a cut-off point of 2.31.A significant association was observed before the turning point,with an odds ratio(95% confidence interval)of 1.70(1.40,2.06),P<0.0001.However,the association between the TyG index and CPs was not significant after the cut-off point,with an odds ratio(95% confidence interval)of 0.57(0.27,1.23),P=0.1521.CONCLUSION Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals,suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.展开更多
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFC0407104)the National Natural Science Foundation of China(Grants No.52079049 and 51739003)+1 种基金the Central University Basic Research Project(Grant No.B200202160)the Water Science Project of Xinjiang(Grant No.YF 2020-05).
文摘The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,particularly of heightened projects in the impoundment period.Herein,a new method for monitoring the safety status of heightened dams is proposed based on the deformation monitoring data of a dam structure,a statistical model,and finite-element numerical simulation.First,a fast optimization inversion method for estimation of dam mechanical parameters was developed,which used the water pressure component extracted from a statistical model,an improved inversion objective function,and a genetic optimization iterative algorithm.Then,a finite element model of a heightened concrete gravity dam was established,and the deformation behavior of the dam with rising water levels in the impoundment period was simulated.Subsequently,mechanical parameters of aged dam parts were calculated using the fast optimization inversion method with simulated deformation and the water pressure deformation component obtained by the statistical model under the same conditions of water pressure change.Finally,a new earlywarning index of dam deformation was constructed by means of the forward-simulated deformation and other components of the statistical model.The early-warning index is useful for forecasting dam deformation under different water levels,especially high water levels.
文摘The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure the warning condition that the enterprise faces and take the effective measures to eliminate. We criticize Altman’sZ calculating model and build up some new indexes for enterprise financial early-warning condition measuring and making sound decision.
基金Supported by a Grant from the Science and Technology Project ofYunnan Province(2006NG02)~~
文摘By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.
基金supported by the National Natural Science Foundation of China (71303238)the National Science and Technology Support Plan Projects (2012BAH20B04)the compilation group of the China Agricultural Outlook Report (2015–2024)
文摘The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as agricultural outlook must be strengthened. In this study, we develop the China Agricultural Monitoring and Early-warning System (CAMES) on the basis of a comparative study of domestic and international agricultural outlook models. The system is a dynamic and multi-market partial equilibrium model that integrates biological mechanisms with economic mechanisms. This system, which includes 11 categories of 953 kinds of agricultural products, could dynamical y project agricultural market supply and demand, assess food security, and conduct scenario analysis at different spatial levels, time scale levels, and macro-micro levels. Based on the CAMES, the production, consumption, and trade of the major agricultural products in China over the next decade are projected. The fol owing conclusions are drawn:i) The production of major agricultural products wil continue to grow steadily, mainly because of the increase in yield. i ) The growth of agricultural consumption wil be slightly higher than that of agricultural production. Meanwhile, a high self-sufifciency rate is expected for cereals such as rice, wheat, and maize, with the rate being stable at around 97%. i i) Agricultural trade wil continue to thrive. The growth of soybean and milk im-ports wil slow down, but the growth of traditional agricultural exports such as vegetables and fruits is expected to continue.
基金Project 70533050 supported by the National Natural Science Foundation of China
文摘The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.
文摘By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the temperature,humidity,wind direction,wind speed,air pressure and so on.The conceptual models of high-altitude and ground situation were established when the heavy fog happened in Chizhou City.Based on considering sufficiently the special geographical environment in Chizhou City,we found the key factors which affected the local heavy fog via the relative analyses.By using the statistical forecast methods which included the second-level judgment method and regression method of event probability and so on,the forecast mode equation of heavy fog was established.Moreover,the objective forecast system of heavy fog in Chizhou City was also manufactured.It provided the basis and platform which could be referred for the heavy fog forecast,service and the release of early-warning signal.
文摘The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.
文摘Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters were differentiated into essential attributes and external characters, and its workflow mode was established on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk early-warning factors was determined with Information Entropy method, which improved standard risk early-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified the outcome could reflect more risk information than the method of standard DEA model, and reflected the rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure risk.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. JUSRP21117)the Program for Innovative Research Team of Jiangnan University (Grant No. 2008CX002)
文摘Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been performed over the years on the biological properties, chemical characteristics, external environmental factors and other aspects of the virus, and some results have been achieved. Based on the chaos game representation walk model, this paper uses the time series analysis method to study the DNA sequences of the influenza virus from 1913 to 2010, and works out the early-warning signals indicator value for the outbreak of an influenza pandemic. The variances in the CCR wall〈 sequences for the pandemic years (or + -1 to 2 years) are significantly higher than those for the adjacent years, while those in the non-pandemic years are usually smaller. In this way we can provide an influenza early-warning mechanism so that people can take precautions and be well prepared prior to a pandemic.
基金Fund by the Ministry of Science and Technology, No.2002BA516A17 Foundation of Chinese Academy of Forestry Science, No.200114
文摘According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system’s performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention.
文摘The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that it can promptly deliver the early-warning information concerning some meteorological disasters(such as torrential rains,typhoons,cold wave,hail)to the areas affected,so as to provide reference and protection for agricultural production and effectively reduce the loss of agricultural producers.Up to now,the meteorological early-warning loudspeakers in Benxi have covered the villages.However,due to irregular occurrence of meteorological disasters,the listeners will turn off the information receivers of meteorological early-warning loudspeakers when they fail to receive meteorological information for a long time,so that the users can not promptly know the early-warning information regarding some sudden meteorological disasters.In view of this,the meteorological departments have introduced a series of management measures,such as the daily use of loudspeakers to publish weather forecast information,aimed at improving the online rate and usage rate of meteorological loudspeakers.And the management platform for online rate of meteorological early-warning loudspeakers is an important part of the management system.
基金This work is supported by the National Natural Science Foundation of China(Nos.72071150,71871174).
文摘As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their customer resources,it is crucial for banks to accurately predict customers with a tendency to churn.Aiming at the typical binary classification problem like customer churn,this paper establishes an early-warning model for credit card customer churn.That is a dual search algorithm named GSAIBAS by incorporating Golden Sine Algorithm(GSA)and an Improved Beetle Antennae Search(IBAS)is proposed to optimize the parameters of the CatBoost algorithm,which forms the GSAIBAS-CatBoost model.Especially,considering that the BAS algorithm has simple parameters and is easy to fall into local optimum,the Sigmoid nonlinear convergence factor and the lane flight equation are introduced to adjust the fixed step size of beetle.Then this improved BAS algorithm with variable step size is fused with the GSA to form a GSAIBAS algorithm which can achieve dual optimization.Moreover,an empirical analysis is made according to the data set of credit card customers from Analyttica official platform.The empirical results show that the values of Area Under Curve(AUC)and recall of the proposedmodel in this paper reach 96.15%and 95.56%,respectively,which are significantly better than the other 9 common machine learning models.Compared with several existing optimization algorithms,GSAIBAS algorithm has higher precision in the parameter optimization for CatBoost.Combined with two other customer churn data sets on Kaggle data platform,it is further verified that the model proposed in this paper is also valid and feasible.
基金Sponsored by Excellent Young Scholars Research Fund of Beijing Institute of Technology (c2007Y0820)Program for New Century Excellent Talents in University (NCET)"985" Philosophy and Social Science Innovation Base of the Ministry of Education(107008200400024)
文摘Relying on the advanced information technologies, such as information monitoring, data mining, natural language processing etc., the dynamic technology early-warning system is constructed. The system consists of technology information automatic retrieval, technology information monitoring, technology threat evaluation, and crisis response and management subsystem, which implements uninterrupted dynamic monitoring, trace and crisis early-warning to the specific technology. Empirical study testifies that the system improves the accuracy, timeliness and reliability of technology early-warning.
文摘To establish a financial early-warning model with high accuracy of discrimination and achieve the aim of long-term prediction, principal component analysis (PCA), Fisher discriminant, together with grey forecasting models are used at the same time. 110 A-share companies listed on the Shanghai and Shenzhen stock exchange are selected as research samples. And 10 extractive factors with 89.746% of all the original information are determined by applying PCA, which obtains the goal of dimension reduction without information loss. Based on the index system, the early-warning model is constructed according to the Fisher rules. And then the GM(1,1) is adopted to predict financial ratios in 2004, according to 40 testing samples from 2000 to 2003. Finally, two different methods, a self-validated and a forecasting-validated, are used to test the validity of the financial crisis warning model. The empirical results show that the model has better predictability and feasibility, and GM(1,1) contributes to the ability to make long-term predictions.
文摘This article proposed the risk early-warning model of gas hazard based on Rough Set and neural network. The attribute quantity was reduced by Rough Set, the main characteristic attributes were withdrawn, the complexity of neural network system and the computing time was reduced, as well. Because of fault-tolerant ability, parallel processing ability, anti-jamming ability and processing non-linear problem ability of neural network system, the methods of Rough Set and neural network were combined. The examples research indicate: applying Rough Set and BP neural network to the gas hazard risk early-warning coal mines in coal mine, the BPNN structure is greatly simplified, the network computation quantity is reduced and the convergence rate is speed up.
基金Supported by Special Project for Improving Science and Technology Innovation Ability of Army Medical University,No.2022XLC09.
文摘BACKGROUND The incidence of chronic kidney disease among patients with diabetes mellitus(DM)remains a global concern.Long-term obesity is known to possibly influence the development of type 2 diabetes mellitus.However,no previous meta-analysis has assessed the effects of body mass index(BMI)on adverse kidney events in patients with DM.AIM To determine the impact of BMI on adverse kidney events in patients with DM.METHODS A systematic literature search was performed on the PubMed,ISI Web of Science,Scopus,Ovid,Google Scholar,EMBASE,and BMJ databases.We included trials with the following characteristics:(1)Type of study:Prospective,retrospective,randomized,and non-randomized in design;(2)participants:Restricted to patients with DM aged≥18 years;(3)intervention:No intervention;and(4)kidney adverse events:Onset of diabetic kidney disease[estimated glomerular filtration rate(eGFR)of<60 mL/min/1.73 m2 and/or microalbuminuria value of≥30 mg/g Cr],serum creatinine increase of more than double the baseline or end-stage renal disease(eGFR<15 mL/min/1.73 m2 or dialysis),or death.RESULTS Overall,11 studies involving 801 patients with DM were included.High BMI(≥25 kg/m2)was significantly associated with higher blood pressure(BP)[systolic BP by 0.20,95%confidence interval(CI):0.15–0.25,P<0.00001;diastolic BP by 0.21 mmHg,95%CI:0.04–0.37,P=0.010],serum albumin,triglycerides[standard mean difference(SMD)=0.35,95%CI:0.29–0.41,P<0.00001],low-density lipoprotein(SMD=0.12,95%CI:0.04–0.20,P=0.030),and lower high-density lipoprotein(SMD=–0.36,95%CI:–0.51 to–0.21,P<0.00001)in patients with DM compared with those with low BMIs(<25 kg/m2).Our analysis showed that high BMI was associated with a higher risk ratio of adverse kidney events than low BMI(RR:1.22,95%CI:1.01–1.43,P=0.036).CONCLUSION The present analysis suggested that high BMI was a risk factor for adverse kidney events in patients with DM.
基金supported by the National Natural Science Foundation of China(42271360 and 42271399)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2020QNRC001)the Fundamental Research Funds for the Central Universities,China(2662021JC013,CCNU22QN018)。
文摘Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3901403 and 2023YFC3007203).
文摘The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.
基金This study was funded by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(51909221)the China Postdoctoral Science Foundation(2020T130541 and 2019M650277).
文摘In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.
基金Supported by Suzhou Municipal Science and Technology Program of China,No.SKJY2021012.
文摘BACKGROUND Colorectal polyps(CPs)are frequently occurring abnormal growths in the colorectum,and are a primary precursor of colorectal cancer(CRC).The triglyceride-glucose(TyG)index is a novel marker that assesses metabolic health and insulin resistance,and has been linked to gastrointestinal cancers.AIM To investigate the potential association between the TyG index and CPs,as the relation between them has not been documented.METHODS A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan,Jiangsu Province,China,between January 2020 and December 2022 were included in this retrospective cross-sectional study.After excluding individuals who did not meet the eligibility criteria,descriptive statistics were used to compare characteristics between patients with and without CPs.Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs.The TyG index was calculated using the following formula:Ln[triglyceride(mg/dL)×glucose(mg/dL)/2].The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports.RESULTS A nonlinear relation between the TyG index and the prevalence of CPs was identified,and exhibited a curvilinear pattern with a cut-off point of 2.31.A significant association was observed before the turning point,with an odds ratio(95% confidence interval)of 1.70(1.40,2.06),P<0.0001.However,the association between the TyG index and CPs was not significant after the cut-off point,with an odds ratio(95% confidence interval)of 0.57(0.27,1.23),P=0.1521.CONCLUSION Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals,suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.