Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit ...Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.展开更多
A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing ...A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.展开更多
An effective refractive index sensor built with square lattice photonic crystal is proposed,which can be applicable to photonic integrated circuits.Two photonic crystal waveguides rather than conventional ridge wavegu...An effective refractive index sensor built with square lattice photonic crystal is proposed,which can be applicable to photonic integrated circuits.Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity.Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity.The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation.At the resonant wavelength of about 1500 nm,the resonant wavelength shifts up by 0.7 nm for each increment of Δn=0.001.A transmission of more than 0.75 is observed.Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor, the transmission reduces rapidly as the disorder increases.展开更多
A metal-insulator-metal(MIM)-based arc-shaped resonator coupled with a rectangular stub(MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. T...A metal-insulator-metal(MIM)-based arc-shaped resonator coupled with a rectangular stub(MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. The structure has the advantage of being sensitive to the refractive index, and this feature makes it favorable for application in various microsensors. The relationship between the structural parameters and Fano resonance is researched using the finite element method(FEM) based on the software COMSOL Multiphysics 5.4. The simulation reveals that the sensitivity reaches1900 nm/refractive index unit(RIU), and the figure of merit(FOM) is 23.75.展开更多
A plasmonic resonator system consisting of a metal–insulator–metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are ...A plasmonic resonator system consisting of a metal–insulator–metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated by using the finite difference in time domain(FDTD) method, and the simulation results contain two resonant dips. The physical mechanism is studied by the multimode interference coupled mode theory(MICMT), and the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust the two dips, respectively. The refractive index sensor proposed in this paper, with a sensitivity of 1578 nm/RIU and figure of merit(FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.展开更多
We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlap...We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlapping area of the core mode and surface plasmon polariton (SPP) mode. The coupling properties of the sensor are analyzed by numerical simulation. The maximum sensitivity of 5000 nm/RIU in an RI range of 1.33-1.44, and the average sensitivity of 9295 nm/RIU in an RI range from 1.44 to 1.54 can be obtained.展开更多
A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by t...A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by the finite element method (FEM). For the interaction of the narrow-band spectral response and the broadband spectral response caused by the side-coupled resonators and the rectangular resonator, respectively, the transmission spectra exhibit a sharp and asymmetric profile. Results are analyzed using the coupled-mode theory based on the transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1160 nm/RIU, and the corresponding sensing resolution is 8.62 × 10 -5 RIU. In addition, the coupled MIM waveguide structure can be easily extended to other similar compact structures to realize the sensing task and integrated with other photonic devices at the chip scale. This work paves the way toward the sensitive nanometer scale refractive index sensor for design and application.展开更多
A multimode interference refractive index (KI) sensor based on the coreless fiber was numerically and experimentally demonstrated. Two identical single mode fibers (SMF) are spliced at both ends of a section of th...A multimode interference refractive index (KI) sensor based on the coreless fiber was numerically and experimentally demonstrated. Two identical single mode fibers (SMF) are spliced at both ends of a section of the coreless fiber which can he considered as the equivalent weakly guiding multimode fiber (MMF) with a step-index profile when the surrounding refractive index (SKI) is lower than that of the coreless fiber. Thus, it becomes the conventional single-mode multimode single-mode (SMS) fiber structure but with a larger core size. The output spectra will shift along with the changes in the SKI owing to the direct exposure of the coreless fiber. The output spectra under different SKIs were numerically studied, as well as the sensitivities with different lengths and diameters of the coreless fiber. The predication and calculation showed the good agreement with the experimental results. The proposed RI sensor proved to be feasible by verification experiments, and the relative error was merely 0.1% which occupied preferable sensing performance and practicability.展开更多
A waveguide coupled surface plasmon sensor for detection of liquid with high refractive index(RI)is designed based on polymer materials.The effects of variation of the thickness of the Au film,polymethyl methacrylate(...A waveguide coupled surface plasmon sensor for detection of liquid with high refractive index(RI)is designed based on polymer materials.The effects of variation of the thickness of the Au film,polymethyl methacrylate(PMMA)buffer,and waveguide layer on the sensing performance of the waveguide are comprehensively investigated by using the finite difference method.Numerical simulations show that a thinner gold film gives rise to a more sensitive structure,while the variation of the thickness of the PMMA buffer and waveguide layer has a little effect on the sensitivity.For liquid with high RI,the sensitivity of the sensor increases significantly.When RI of liquid to be measured increases from 1.45 to 1.52,the sensitivity is as high as 4518.14 nm/RIU,and a high figure of merit of 114.07 is obtained.The waveguide coupled surface plasmon RI sensor shows potential applications in the fields of environment,industry,and agriculture sensing with the merits of compact size,low cost,and high integration density.展开更多
In this work, the behavior of refractive index sensors based on optical micro-ring resonators is studied in detail. Using a result of waveguide perturbation theory in combination with numerical simulations, the optimu...In this work, the behavior of refractive index sensors based on optical micro-ring resonators is studied in detail. Using a result of waveguide perturbation theory in combination with numerical simulations, the optimum design parameters of the system, maximizing the sensitivity of the sensor, are determined. It is found that, when optimally designed, the sensor can detect relative refractive index changes of the order of △n/n≈3×10^-4, assuming that the experimental setup can detect relative wavelength shifts of the order of △λ/λ≈3×10^-5. The behavior of the system as bio-sensor has also been examined. It is found that, when optimally designed, the system can detect refractive index changes of the order of △n≈ 10^-3 for a layer thickness of t=- 10 nm, and changes in the layer thickness of the order of △t≈0.24 nm, for a refractive index change of △n=0.05.展开更多
We propose a highly refractive index sensor based on plasmonic Bow Tie configuration.The sensitivity of the resonator design is enhanced by incorporating a nanowall(NW)in a modified Bow Tie design where sharp tips of ...We propose a highly refractive index sensor based on plasmonic Bow Tie configuration.The sensitivity of the resonator design is enhanced by incorporating a nanowall(NW)in a modified Bow Tie design where sharp tips of V-junction are flattened.This approach provides high confinement of electric field distribution of surface plasmon polariton(SPP)mode in the narrow region of the cavity.Consequently,the effective refractive index(neff)of the mode increases and is highly responsive to the ambient medium.The sensitivity analysis of the SPP mode is calculated for six resonator schemes.The results suggest that the NW embedded cavity offers the highest mode sensitivity due to the large shift of effective index when exposed to a slight change in the medium refractive index.Moreover,the device sensitivity of the proposed design is approximated at 2300 nm/RIU which is much higher than the sensitivity of the standard Bow Tie configuration.展开更多
Miniature optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and a transducer to get response and feedback fr...Miniature optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and a transducer to get response and feedback from environments, in which optical fibers act as a signal carrier. A novel Ag coated intensity modulated optical fiber sensor based on refractive index changes using IR and UV-Vis (UV-visible) light sources is proposed. The sensor with an IR light source has higher sensitivity compared to a UV-Vis source. When the refractive index is en- hanced to 1.38, the normalized intensity of IR and UV-Vis light diminishes to 0.2 and 0.8. respectively.展开更多
A refractive index(RI)sensor based on elliptical core photonic crystal fiber(EC-PCF)has been proposed.The asymmetric elliptical core introduces the polarization-dependent characteristics of the fiber core modes.The pe...A refractive index(RI)sensor based on elliptical core photonic crystal fiber(EC-PCF)has been proposed.The asymmetric elliptical core introduces the polarization-dependent characteristics of the fiber core modes.The performances of intermodal interference between the intrinsic polarization fiber core modes are investigated by contrast in two interferometers based on the Mach-Zehnder(M-Z)and Sagnac interference model.In addition,the RI sensing characteristics of the two interferometers are studied by successively filling the three layers air holes closest to the elliptical core in the cladding.The results show that the M-Z interference between LP_(01)and LP_(11)mode in the same polarized direction is featured with the incremental RI sensing sensitivity as the decreasing interference length,and the infilled scope around the elliptical core has a weak correlation with the RI sensing sensitivity.Due to the high birefringence of LP11 mode,the Sagnac interferometer has better RI sensing performance,the maximum RI sensing sensitivity of 12000 nm/RIU is achieved under the innermost one layer air holes infilled with RI matching liquid of RI=1.39 at the pre-setting EC-PCF length of 12 cm,which is two orders of magnitude higher than the M-Z interferometer with the same fiber length.The series of theoretical optimized analysis would provide guidance for the applications in the field of biochemical sensing.展开更多
A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing perfo...A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.展开更多
A fiber inline interferometric refractive index (RI) sensor consisting of a microchannel and a fiber taper is proposed in this letter. The microchannel is fabricated by combining femtosecond laser micromachining and...A fiber inline interferometric refractive index (RI) sensor consisting of a microchannel and a fiber taper is proposed in this letter. The microchannel is fabricated by combining femtosecond laser micromachining and arc fusion splicing. No subsequent chemical etching process is needed. Three sensors with microchannel widths of 4, 8, and 10 μm are prepared. The sensitivity in the RI range from 1.33 to 1.35 is up to -361.29 nm/RIU at the microchannel width of 8 μm. The sensitivity is -20 times greater than that of the paired taper-based MZI sensors and long period fiber grating pair MZI sensors.展开更多
Photonic crystal fiber (PCF) is employed as a refractive index sensor (RIS) for solving a lot of problems in biological, physicochemical, medical, engineering fields and many environmental challenges, where it is used...Photonic crystal fiber (PCF) is employed as a refractive index sensor (RIS) for solving a lot of problems in biological, physicochemical, medical, engineering fields and many environmental challenges, where it is used in many industries of food, medicines, chemical materials and material diagnosis. The kind of the PCFs was HC-1550 with three wavelengths of laser source were used;638 nm, 850 nm, and 1550 nm that are useful for recording the intended transmitted signal intensity. Therefore, the measured RI was in the range (1.469 - 1.455 RIU) at the temperature range (36 - 70)°C for the EBBA and it was (1.621 - 1.612 RIU) at the temperature range (22 - 42)°C for the MBBA. The results showed that the highest RI sensitivity was 96.335 dBm/RIU for the HC-1550 infiltrated with MBBA using the laser of wavelength 638 nm, Also, the highest temperature sensitivity was 0.2505 dBm/°C for empty HC-1550 using the laser of wavelength 1550 nm.展开更多
We demonstrate a novel optofluidic refractive index (RI) sensor with high sensitivity and wide dynamic range based on partial reflection. Benefited from the divergent incident light and the output fibers with differ...We demonstrate a novel optofluidic refractive index (RI) sensor with high sensitivity and wide dynamic range based on partial reflection. Benefited from the divergent incident light and the output fibers with different tilting angles, we have achieved highly sensitive RI sensing in a wide range from 1.33 to 1.37. To investigate the effectiveness of this sensor, we perform a measurement of RI with a resolution of ca. 5.0× 10^-5 refractive index unit (RIU) for ethylene glycol solutions. Also, we have measured a series of liquid solutions by using different output fibers, achieving a resolution of ca. 0.52mg/mL for cane surge. The optofluidic RI sensor takes advantage of the high sensitivity, wide dynamic range, small footprint, and low sample consumption, as well as the efficient fluidic sample delivery, making it useful for applications in the food industry.展开更多
It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In t...It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology (Grant No.YK22-02-08)+2 种基金the Qing Lan Project of Jiangsu Provincethe Natural Science Foundation of Jiangsu Province of China (Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China (Grant No.ZK21-05-09)。
文摘Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.
基金Project supported by the Natural Science Foundation of China (Grant Nos.62075107,61935006,62090064,and62090065)K.C.Wong Magna Fund in Ningbo University。
文摘A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.
基金supported by the National Natural Science Foundation of China under Grant No.0475048.
文摘An effective refractive index sensor built with square lattice photonic crystal is proposed,which can be applicable to photonic integrated circuits.Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity.Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity.The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation.At the resonant wavelength of about 1500 nm,the resonant wavelength shifts up by 0.7 nm for each increment of Δn=0.001.A transmission of more than 0.75 is observed.Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor, the transmission reduces rapidly as the disorder increases.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 61875250 and 61975189)the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LD21F050001 and Y21F040001)+3 种基金the Key Research Project by Department of Water Resources of Zhejiang Province (Grant No. RA2101)the Key Research and Development Project of Zhejiang Province (Grant No. 2021C03019)the Key R&D Projects of Shanxi Province (Grant Nos. 201903D421032 and 01804D131038)the Scientific Research Foundation of Zhejiang University of Water Resources and Electric Power (Grant No. xky2022032)。
文摘A metal-insulator-metal(MIM)-based arc-shaped resonator coupled with a rectangular stub(MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. The structure has the advantage of being sensitive to the refractive index, and this feature makes it favorable for application in various microsensors. The relationship between the structural parameters and Fano resonance is researched using the finite element method(FEM) based on the software COMSOL Multiphysics 5.4. The simulation reveals that the sensitivity reaches1900 nm/refractive index unit(RIU), and the figure of merit(FOM) is 23.75.
基金supported by the National Natural Science Foundation of China (Grant No. 61865008)Northwest Normal University Young Teachers’ Scientific Research Capability Upgrading Program (Grant No. NWNU-LKQN202011)。
文摘A plasmonic resonator system consisting of a metal–insulator–metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated by using the finite difference in time domain(FDTD) method, and the simulation results contain two resonant dips. The physical mechanism is studied by the multimode interference coupled mode theory(MICMT), and the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust the two dips, respectively. The refractive index sensor proposed in this paper, with a sensitivity of 1578 nm/RIU and figure of merit(FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.
基金Project supported by the Major Projects of the National Natural Science Foundation of China(Grant No.61290315)the National Natural Science Foundation of China(Grant No.61340057)the Special Program of the National Modern Service Industrial Development Foundation of China(Grant No.[2012]14)
文摘We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlapping area of the core mode and surface plasmon polariton (SPP) mode. The coupling properties of the sensor are analyzed by numerical simulation. The maximum sensitivity of 5000 nm/RIU in an RI range of 1.33-1.44, and the average sensitivity of 9295 nm/RIU in an RI range from 1.44 to 1.54 can be obtained.
基金The authors thank Xiangxian WANG from the School of Science, Lanzhou University of Technology, Lanzhou, China for their discussions to this research. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61367005 and 74011119) and the Natural Science Foundation of Gansu Province (Grant No. 17JR5RA078).
文摘A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by the finite element method (FEM). For the interaction of the narrow-band spectral response and the broadband spectral response caused by the side-coupled resonators and the rectangular resonator, respectively, the transmission spectra exhibit a sharp and asymmetric profile. Results are analyzed using the coupled-mode theory based on the transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1160 nm/RIU, and the corresponding sensing resolution is 8.62 × 10 -5 RIU. In addition, the coupled MIM waveguide structure can be easily extended to other similar compact structures to realize the sensing task and integrated with other photonic devices at the chip scale. This work paves the way toward the sensitive nanometer scale refractive index sensor for design and application.
文摘A multimode interference refractive index (KI) sensor based on the coreless fiber was numerically and experimentally demonstrated. Two identical single mode fibers (SMF) are spliced at both ends of a section of the coreless fiber which can he considered as the equivalent weakly guiding multimode fiber (MMF) with a step-index profile when the surrounding refractive index (SKI) is lower than that of the coreless fiber. Thus, it becomes the conventional single-mode multimode single-mode (SMS) fiber structure but with a larger core size. The output spectra will shift along with the changes in the SKI owing to the direct exposure of the coreless fiber. The output spectra under different SKIs were numerically studied, as well as the sensitivities with different lengths and diameters of the coreless fiber. The predication and calculation showed the good agreement with the experimental results. The proposed RI sensor proved to be feasible by verification experiments, and the relative error was merely 0.1% which occupied preferable sensing performance and practicability.
基金Development Program(Grant Nos.2018YFJH0702 and 2019JZZY020711)Qingdao Postdoctoral Applied Research Project(Grant No.6242007311086).
文摘A waveguide coupled surface plasmon sensor for detection of liquid with high refractive index(RI)is designed based on polymer materials.The effects of variation of the thickness of the Au film,polymethyl methacrylate(PMMA)buffer,and waveguide layer on the sensing performance of the waveguide are comprehensively investigated by using the finite difference method.Numerical simulations show that a thinner gold film gives rise to a more sensitive structure,while the variation of the thickness of the PMMA buffer and waveguide layer has a little effect on the sensitivity.For liquid with high RI,the sensitivity of the sensor increases significantly.When RI of liquid to be measured increases from 1.45 to 1.52,the sensitivity is as high as 4518.14 nm/RIU,and a high figure of merit of 114.07 is obtained.The waveguide coupled surface plasmon RI sensor shows potential applications in the fields of environment,industry,and agriculture sensing with the merits of compact size,low cost,and high integration density.
文摘In this work, the behavior of refractive index sensors based on optical micro-ring resonators is studied in detail. Using a result of waveguide perturbation theory in combination with numerical simulations, the optimum design parameters of the system, maximizing the sensitivity of the sensor, are determined. It is found that, when optimally designed, the sensor can detect relative refractive index changes of the order of △n/n≈3×10^-4, assuming that the experimental setup can detect relative wavelength shifts of the order of △λ/λ≈3×10^-5. The behavior of the system as bio-sensor has also been examined. It is found that, when optimally designed, the system can detect refractive index changes of the order of △n≈ 10^-3 for a layer thickness of t=- 10 nm, and changes in the layer thickness of the order of △t≈0.24 nm, for a refractive index change of △n=0.05.
基金This work was financially supported by the Ministry of Science and Higher Education within the State assignment FSRC“Crystallography and Photonics”RAS(Grant No.007-GZ/Ch3363/26).
文摘We propose a highly refractive index sensor based on plasmonic Bow Tie configuration.The sensitivity of the resonator design is enhanced by incorporating a nanowall(NW)in a modified Bow Tie design where sharp tips of V-junction are flattened.This approach provides high confinement of electric field distribution of surface plasmon polariton(SPP)mode in the narrow region of the cavity.Consequently,the effective refractive index(neff)of the mode increases and is highly responsive to the ambient medium.The sensitivity analysis of the SPP mode is calculated for six resonator schemes.The results suggest that the NW embedded cavity offers the highest mode sensitivity due to the large shift of effective index when exposed to a slight change in the medium refractive index.Moreover,the device sensitivity of the proposed design is approximated at 2300 nm/RIU which is much higher than the sensitivity of the standard Bow Tie configuration.
基金supported by the Universiti Teknologi Malaysia,AMTEC(No.R.J130000.7609.4C112)the Frontier Material Research Alliance
文摘Miniature optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and a transducer to get response and feedback from environments, in which optical fibers act as a signal carrier. A novel Ag coated intensity modulated optical fiber sensor based on refractive index changes using IR and UV-Vis (UV-visible) light sources is proposed. The sensor with an IR light source has higher sensitivity compared to a UV-Vis source. When the refractive index is en- hanced to 1.38, the normalized intensity of IR and UV-Vis light diminishes to 0.2 and 0.8. respectively.
基金jointly supported by the Tianjin Natural Science Foundation(No.18JCQNJC71300)the National Natural Science Foundation of China(Nos.11804250,11904262 and 11704283)+1 种基金the Tianjin Education Commission Scientific Research Project(No.2018KJ146)the Opening Foundation of Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems(No.2019LODTS004)。
文摘A refractive index(RI)sensor based on elliptical core photonic crystal fiber(EC-PCF)has been proposed.The asymmetric elliptical core introduces the polarization-dependent characteristics of the fiber core modes.The performances of intermodal interference between the intrinsic polarization fiber core modes are investigated by contrast in two interferometers based on the Mach-Zehnder(M-Z)and Sagnac interference model.In addition,the RI sensing characteristics of the two interferometers are studied by successively filling the three layers air holes closest to the elliptical core in the cladding.The results show that the M-Z interference between LP_(01)and LP_(11)mode in the same polarized direction is featured with the incremental RI sensing sensitivity as the decreasing interference length,and the infilled scope around the elliptical core has a weak correlation with the RI sensing sensitivity.Due to the high birefringence of LP11 mode,the Sagnac interferometer has better RI sensing performance,the maximum RI sensing sensitivity of 12000 nm/RIU is achieved under the innermost one layer air holes infilled with RI matching liquid of RI=1.39 at the pre-setting EC-PCF length of 12 cm,which is two orders of magnitude higher than the M-Z interferometer with the same fiber length.The series of theoretical optimized analysis would provide guidance for the applications in the field of biochemical sensing.
基金the National Natural Science Foundation of China(Grant No.61935007).
文摘A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.
基金supported by the National"973"Program of China(No.2011CB013000)the NationalNatural Science Foundation of China(Nos.90923039and 51105038)
文摘A fiber inline interferometric refractive index (RI) sensor consisting of a microchannel and a fiber taper is proposed in this letter. The microchannel is fabricated by combining femtosecond laser micromachining and arc fusion splicing. No subsequent chemical etching process is needed. Three sensors with microchannel widths of 4, 8, and 10 μm are prepared. The sensitivity in the RI range from 1.33 to 1.35 is up to -361.29 nm/RIU at the microchannel width of 8 μm. The sensitivity is -20 times greater than that of the paired taper-based MZI sensors and long period fiber grating pair MZI sensors.
文摘Photonic crystal fiber (PCF) is employed as a refractive index sensor (RIS) for solving a lot of problems in biological, physicochemical, medical, engineering fields and many environmental challenges, where it is used in many industries of food, medicines, chemical materials and material diagnosis. The kind of the PCFs was HC-1550 with three wavelengths of laser source were used;638 nm, 850 nm, and 1550 nm that are useful for recording the intended transmitted signal intensity. Therefore, the measured RI was in the range (1.469 - 1.455 RIU) at the temperature range (36 - 70)°C for the EBBA and it was (1.621 - 1.612 RIU) at the temperature range (22 - 42)°C for the MBBA. The results showed that the highest RI sensitivity was 96.335 dBm/RIU for the HC-1550 infiltrated with MBBA using the laser of wavelength 638 nm, Also, the highest temperature sensitivity was 0.2505 dBm/°C for empty HC-1550 using the laser of wavelength 1550 nm.
基金This work has been supported in part by National Basic Research Program of China (Nos. 2013CB328703 and 2014CB921303), and National Natural Science Foundation of China (61275217, 21407039).
文摘We demonstrate a novel optofluidic refractive index (RI) sensor with high sensitivity and wide dynamic range based on partial reflection. Benefited from the divergent incident light and the output fibers with different tilting angles, we have achieved highly sensitive RI sensing in a wide range from 1.33 to 1.37. To investigate the effectiveness of this sensor, we perform a measurement of RI with a resolution of ca. 5.0× 10^-5 refractive index unit (RIU) for ethylene glycol solutions. Also, we have measured a series of liquid solutions by using different output fibers, achieving a resolution of ca. 0.52mg/mL for cane surge. The optofluidic RI sensor takes advantage of the high sensitivity, wide dynamic range, small footprint, and low sample consumption, as well as the efficient fluidic sample delivery, making it useful for applications in the food industry.
文摘It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.