An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach....An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice.展开更多
This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all ag...This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.展开更多
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models...Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.展开更多
The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weat...The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.展开更多
With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for pac...With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for packets or flow records have become more and more widely used in network monitoring, network troubleshooting, and user behavior and experience analysis. Among the three key technologies in ITAS, we focus on bitmap index compression algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, COMPAX, VLC, DF-WAH, and VAL-WAH. Based on differences in segmentation, chunking, merge compress, and Near Identical(NI) features, we provide a thorough categorization of the state-of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms, such as SECOMPAX, ICX, MASC, and PLWAH+, and present the state diagrams for their encoding algorithms. We then evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and discuss the future direction of bitmap index compression algorithms. Beyond the application in network security and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space is widely used in analysis in genome data, geographical information system, graph databases, image retrieval, Internet of things, etc. It is expected that bitmap index compression will thrive and be prosperous again in Big Data era since 1980s.展开更多
In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of non...In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of nonzero elements of a general sparse matrix makes it very difficult to generally map sparse matrix computations to multiprocessors for parallel processing in a well balanced manner. To overcome this difficulty, we define a new storage scheme for general sparse matrices in this paper. With the new storage scheme, we develop parallel algorithms to solve large-scale general sparse systems of equations by interval Newton/Generalized bisection methods which reliably find all numerical solutions within a given domain.In Section 1, we provide an introduction to the addressed problem and the interval Newton's methods. In Section 2, some currently used storage schemes for sparse sys-terns are reviewed. In Section 3, new index schemes to store general sparse matrices are reported. In Section 4, we present a parallel algorithm to evaluate a general sparse Jarobian matrix. In Section 5, we present a parallel algorithm to solve the correspond-ing interval linear 8ystem by the all-row preconditioned scheme. Conclusions and future work are discussed in Section 6.展开更多
After the consideration of the nonlinear nature changes of monsoon index,and the subjective determination of network structure in traditional artificial neural network prediction modeling,monthly and seasonal monsoon ...After the consideration of the nonlinear nature changes of monsoon index,and the subjective determination of network structure in traditional artificial neural network prediction modeling,monthly and seasonal monsoon intensity index prediction is studied in this paper by using nonlinear genetic neural network ensemble prediction(GNNEP)modeling.It differs from traditional prediction modeling in the following aspects: (1)Input factors of the GNNEP model of monsoon index were selected from a large quantity of preceding period high correlation factors,such as monthly sea temperature fields,monthly 500-hPa air temperature fields,monthly 200-hPa geopotential height fields,etc.,and they were also highly information-condensed and system dimensionality-reduced by using the empirical orthogonal function(EOF)method,which effectively condensed the useful information of predictors and therefore controlled the size of network structure of the GNNEP model.(2)In the input design of the GNNEP model,a mean generating function(MGF)series of predictand(monsoon index)was added as an input factor;the contrast analysis of results of predic- tion experiments by a physical variable predictor-predictand MGF GNNEP model and a physical variable predictor GNNEP model shows that the incorporation of the periodical variation of predictand(monsoon index)is very effective in improving the prediction of monsoon index.(3)Different from the traditional neural network modeling,the GNNEP modeling is able to objectively determine the network structure of the GNNNEP model,and the model constructed has a better generalization capability.In the case of identical predictors,prediction modeling samples,and independent prediction samples,the prediction accuracy of our GNNEP model combined with the system dimensionality reduction technique of predictors is clearly higher than that of the traditional stepwise regression model using the traditional treatment technique of predictors,suggesting that the GNNEP model opens up a vast range of possibilities for operational weather prediction.展开更多
文摘An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice.
基金supported by Deanship of Scientific research(CDSR)at KFUPM(RG-1316-1)
文摘This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.
文摘Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract No.2016-04-03the National Key Research and Development Program of China under contract No.2016YFC1402701
文摘The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.
基金supported by the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2013CB228206)the National Natural Science Foundation of China A3 Program (No. 61140320)+2 种基金the National Natural Science Foundation of China (Nos. 61233016 and 61472200)supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates (Nos. 201410003033 and 201410003031)Hitachi (China) Research and Development Corporation
文摘With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for packets or flow records have become more and more widely used in network monitoring, network troubleshooting, and user behavior and experience analysis. Among the three key technologies in ITAS, we focus on bitmap index compression algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, COMPAX, VLC, DF-WAH, and VAL-WAH. Based on differences in segmentation, chunking, merge compress, and Near Identical(NI) features, we provide a thorough categorization of the state-of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms, such as SECOMPAX, ICX, MASC, and PLWAH+, and present the state diagrams for their encoding algorithms. We then evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and discuss the future direction of bitmap index compression algorithms. Beyond the application in network security and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space is widely used in analysis in genome data, geographical information system, graph databases, image retrieval, Internet of things, etc. It is expected that bitmap index compression will thrive and be prosperous again in Big Data era since 1980s.
文摘In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of nonzero elements of a general sparse matrix makes it very difficult to generally map sparse matrix computations to multiprocessors for parallel processing in a well balanced manner. To overcome this difficulty, we define a new storage scheme for general sparse matrices in this paper. With the new storage scheme, we develop parallel algorithms to solve large-scale general sparse systems of equations by interval Newton/Generalized bisection methods which reliably find all numerical solutions within a given domain.In Section 1, we provide an introduction to the addressed problem and the interval Newton's methods. In Section 2, some currently used storage schemes for sparse sys-terns are reviewed. In Section 3, new index schemes to store general sparse matrices are reported. In Section 4, we present a parallel algorithm to evaluate a general sparse Jarobian matrix. In Section 5, we present a parallel algorithm to solve the correspond-ing interval linear 8ystem by the all-row preconditioned scheme. Conclusions and future work are discussed in Section 6.
基金the New Technology Extension Project of China Meteorological Administration under Grant No.GMATG2008M49the National Natural Science Foundation of China under Grant No.40675023
文摘After the consideration of the nonlinear nature changes of monsoon index,and the subjective determination of network structure in traditional artificial neural network prediction modeling,monthly and seasonal monsoon intensity index prediction is studied in this paper by using nonlinear genetic neural network ensemble prediction(GNNEP)modeling.It differs from traditional prediction modeling in the following aspects: (1)Input factors of the GNNEP model of monsoon index were selected from a large quantity of preceding period high correlation factors,such as monthly sea temperature fields,monthly 500-hPa air temperature fields,monthly 200-hPa geopotential height fields,etc.,and they were also highly information-condensed and system dimensionality-reduced by using the empirical orthogonal function(EOF)method,which effectively condensed the useful information of predictors and therefore controlled the size of network structure of the GNNEP model.(2)In the input design of the GNNEP model,a mean generating function(MGF)series of predictand(monsoon index)was added as an input factor;the contrast analysis of results of predic- tion experiments by a physical variable predictor-predictand MGF GNNEP model and a physical variable predictor GNNEP model shows that the incorporation of the periodical variation of predictand(monsoon index)is very effective in improving the prediction of monsoon index.(3)Different from the traditional neural network modeling,the GNNEP modeling is able to objectively determine the network structure of the GNNNEP model,and the model constructed has a better generalization capability.In the case of identical predictors,prediction modeling samples,and independent prediction samples,the prediction accuracy of our GNNEP model combined with the system dimensionality reduction technique of predictors is clearly higher than that of the traditional stepwise regression model using the traditional treatment technique of predictors,suggesting that the GNNEP model opens up a vast range of possibilities for operational weather prediction.