期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A new approach for effectively determining fracture network connec- tions in fractured rocks using R tree indexing 被引量:2
1
作者 LIU Hua-mei WANG Ming-yu SONG Xian-feng 《Journal of Coal Science & Engineering(China)》 2011年第4期401-407,共7页
Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably impr... Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably improve the computation efficiency in the pertinent numerical simulations of fluid flow and solute transport. The effective algorithms with higher computational efficiency are needed to accomplish this task in large-scale fractured rock masses. A new approach using R tree indexing was proposed for determining fracture connection in 3D stochastically distributed fracture network. By com- paring with the traditional exhaustion algorithm, it was observed that from the simulation results, this approach was much more effective; and the more the fractures were investigated, the more obvious the advantages of the approach were. Furthermore, it was indicated that the runtime used for creating the R tree indexing has a major part in the total of the runtime used for calculating Minimum Bounding Rectangles (MBRs), creating the R tree indexing, precisely finding out fracture intersections, and identifying flow paths, which are four important steps to determine fracture connections. This proposed approach for the determination of fracture connections in three-dimensional fractured rocks are expected to provide efficient preprocessing and critical database for practically accomplishing numerical computation of fluid flow and solute transport in large-scale fractured rock masses. 展开更多
关键词 fracture network connection fractured rooks R tree indexing
下载PDF
An Efficient Encrypted Speech Retrieval Based on Unsupervised Hashing and B+ Tree Dynamic Index
2
作者 Qiu-yu Zhang Yu-gui Jia +1 位作者 Fang-Peng Li Le-Tian Fan 《Computers, Materials & Continua》 SCIE EI 2023年第7期107-128,共22页
Existing speech retrieval systems are frequently confronted with expanding volumes of speech data.The dynamic updating strategy applied to construct the index can timely process to add or remove unnecessary speech dat... Existing speech retrieval systems are frequently confronted with expanding volumes of speech data.The dynamic updating strategy applied to construct the index can timely process to add or remove unnecessary speech data to meet users’real-time retrieval requirements.This study proposes an efficient method for retrieving encryption speech,using unsupervised deep hashing and B+ tree dynamic index,which avoid privacy leak-age of speech data and enhance the accuracy and efficiency of retrieval.The cloud’s encryption speech library is constructed by using the multi-threaded Dijk-Gentry-Halevi-Vaikuntanathan(DGHV)Fully Homomorphic Encryption(FHE)technique,which encrypts the original speech.In addition,this research employs Residual Neural Network18-Gated Recurrent Unit(ResNet18-GRU),which is used to learn the compact binary hash codes,store binary hash codes in the designed B+tree index table,and create a mapping relation of one to one between the binary hash codes and the corresponding encrypted speech.External B+tree index technology is applied to achieve dynamic index updating of the B+tree index table,thereby satisfying users’needs for real-time retrieval.The experimental results on THCHS-30 and TIMIT showed that the retrieval accuracy of the proposed method is more than 95.84%compared to the existing unsupervised hashing methods.The retrieval efficiency is greatly improved.Compared to the method of using hash index tables,and the speech data’s security is effectively guaranteed. 展开更多
关键词 Encrypted speech retrieval unsupervised deep hashing learning to hash B+tree dynamic index DGHV fully homomorphic encryption
下载PDF
An Indexed Non-Equijoin Algorithm Based on Sliding Windows over Data Streams
3
作者 YU Ya-xin YANG Xing-hua YU Ge WU Shan-shan 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期294-298,共5页
Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input stream... Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input streams are restricted to finite memory due to sliding window constraints. So far, non-indexed and indexed stream equijoin algorithms based on sliding windows have been proposed in many literatures. However, none of them takes non-equijoin into consideration. In many eases, non-equijoin queries occur frequently. Hence, it is worth to discuss how to process non-equijoin queries effectively and efficiently. In this paper, we propose an indexed join algorithm for supporting non-equijoin queries. The experimental results show that our indexed non-equijoin techniques are more efficient than those without index. 展开更多
关键词 non-equijoin data stream sliding window red-black indexing tree
下载PDF
A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix
4
作者 李文法 Wang Gongming +1 位作者 Ma Nan Liu Hongzhe 《High Technology Letters》 EI CAS 2016年第3期241-247,共7页
Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculat... Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing. 展开更多
关键词 nearest neighbor search high-dimensional data SIMILARITY indexing tree NPsim KD-tree SR-tree Munsell
下载PDF
Efficient graph similarity join for information integration on graphs 被引量:4
5
作者 Yue WANG Hongzhi WANG +1 位作者 Jianzhong LI Hong GAO 《Frontiers of Computer Science》 SCIE EI CSCD 2016年第2期317-329,共13页
Graphs have been widely used for complex data representation in many real applications, such as social network, bioinformatics, and computer vision. Therefore, graph similarity join has become imperative for integrati... Graphs have been widely used for complex data representation in many real applications, such as social network, bioinformatics, and computer vision. Therefore, graph similarity join has become imperative for integrating noisy and inconsistent data from multiple data sources. The edit distance is commonly used to measure the similarity between graphs. The graph similarity join problem studied in this paper is based on graph edit distance constraints. To accelerate the similarity join based on graph edit distance, in the paper, we make use of a preprocessing strategy to remove the mismatching graph pairs with significant differences. Then a novel method of building indexes for each graph is proposed by grouping the nodes which can be reached in k hops for each key node with structure conservation, which is the k-hop tree based indexing method. As for each candidate pair, we propose a similarity computation algorithm with boundary filtering, which can be applied with good efficiency and effectiveness. Experiments on real and synthetic graph databases also confirm that our method can achieve good join quality in graph similarity join. Besides, the join process can be finished in polynomial time. 展开更多
关键词 graph similarity join edit distance constraint khop tree based indexing structure conservation boundary filtering
原文传递
Improving performance by creating a native join-index for OLAP 被引量:3
6
作者 Yansong ZHANG Shan WANG Jiaheng LU 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第2期236-249,共14页
The performance of online analytical processing (OLAP) is critical for meeting the increasing requirements of massive volume analytical applications. Typical techniques, such as in-memory processing, column-storage,... The performance of online analytical processing (OLAP) is critical for meeting the increasing requirements of massive volume analytical applications. Typical techniques, such as in-memory processing, column-storage, and join indexes focus on high perfor- mance storage media, efficient storage models, and reduced query processing. While they effectively perform OLAP applications, there is a vital limitation: main- memory database based OLAP (MMOLAP) cannot provide high performance for a large size data set. In this paper, we propose a novel memory dimension table model, in which the primary keys of the dimension table can be directly mapped to dimensional tuple addresses. To achieve higher performance of dimensional tuple access, we optimize our storage model for dimension tables based on OLAP query workload features. We present directly dimensional tuple accessing (DDTA) based join (DDTA- JOIN), a technique to optimize query processing on the memory dimension table by direct dimensional tuple access. We also contribute by proposing an optimization of the predicate tree to shorten predicate operation length by pruning useless predicate processing. Our experimental results show that the DDTA-JOIN algorithm is superior to both simulated row-store main memory query processing and the open-source column-store main memory database MonetDB, thanks to the reduced join cost and simple yet efficient query processing. 展开更多
关键词 directly dimensional tuple accessing (DDTA) DDTA JOIN native join index predicate tree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部