A preliminary design for a heavy ion driver inertial fusion(HIDIF) target is presented. The effect of target material and dimensions on transfer efficiency and symmetrical irradiation in the hohlraum are investigate...A preliminary design for a heavy ion driver inertial fusion(HIDIF) target is presented. The effect of target material and dimensions on transfer efficiency and symmetrical irradiation in the hohlraum are investigated.The analysis led to the evaluation of optimal target materials and dimensions to achieve a positive power balance of an ICF power plant.The results show that the best choice is a high Z material for cavity wall materials and a low Z material for the capsule ablator.It is concluded that for achieving the highest transfer efficiency and best symmetrization we need an area ratio between 5≤A2/A1≤9.展开更多
文摘A preliminary design for a heavy ion driver inertial fusion(HIDIF) target is presented. The effect of target material and dimensions on transfer efficiency and symmetrical irradiation in the hohlraum are investigated.The analysis led to the evaluation of optimal target materials and dimensions to achieve a positive power balance of an ICF power plant.The results show that the best choice is a high Z material for cavity wall materials and a low Z material for the capsule ablator.It is concluded that for achieving the highest transfer efficiency and best symmetrization we need an area ratio between 5≤A2/A1≤9.